in

Expansion of US wood pellet industry points to positive trends but the need for continued monitoring

  • 1.

    Solomon, S., Manning, M., Marquis, M. & Qin, D. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC Vol 4 (Cambridge university Press, 2007).

  • 2.

    Parliament, E. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union Belgium 20, 20 (2009).

    Google Scholar 

  • 3.

    Parliament, E. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Off. J. Eur Union Belgium 20, 2 (2018).

    Google Scholar 

  • 4.

    United Nations Climate Change Conference. Paris Agreement (2015).

  • 5.

    Eurostat. Supply, transformation and consumption of renewable energies: Annual data. Eurostat Website. https://ec.europa.eu/eurostat/web/energy/data/database (2019).

  • 6.

    European Commission. National renewable energy action plans 2020. https://ec.europa.eu/energy/en/topics/renewable-energy/national-renewable-energy-action-plans-2020 (2020).

  • 7.

    Camia, A. et al. Biomass production, supply, uses and flows in the European Union. 1–126 (2018) https://doi.org/10.2760/181536.

  • 8.

    Evans, A., Strezov, V. & Evans, T. J. Biomass Processing Technologies (CRC Press, Boca Raton, 2014). https://doi.org/10.1201/b17093.

    Google Scholar 

  • 9.

    Goerndt, M. E., Aguilar, F. X. & Skog, K. Resource potential for renewable energy generation from co-firing of woody biomass with coal in the Northern US. Biomass Bioenergy 59, 348–361 (2013).

    Article  Google Scholar 

  • 10.

    Spelter, H. & Toth, D. North America’s Wood Pellet Sector. USDA, Forest Products Laboratory. https://www.fs.usda.gov/treesearch/pubs/35060 (2009). https://doi.org/10.2737/FPL-RP-656.

  • 11.

    Eurostat. International trade, EU trade since 1988 by HS6. Product 440131. Eurostat Website. https://ec.europa.eu/eurostat/web/international-trade-in-goods/data/database (2019).

  • 12.

    Proskurina, S., Junginger, M., Heinimö, J., Tekinel, B. & Vakkilainen, E. Global biomass trade for energy—Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels Bioprod. Biorefining 13, 371–387 (2019).

    CAS  Article  Google Scholar 

  • 13.

    Abt, K. L., Abt, R. C., Galik, C. S. & Skog, K. E. Effect of policies on pellet production and forests in the US South: A technical document supporting the forest service update of the 2010 RPA assessment. Gen. Tech. Rep. SRS-202 Asheville NC US Dep. Agric. For. Serv. South. Res. Stn. 202, 33 (2014).

    Google Scholar 

  • 14.

    Dale, V. H., Parish, E., Kline, K. L. & Tobin, E. How is wood-based pellet production affecting forest conditions in the southeastern United States?. For. Ecol. Manag. 396, 143–149 (2017).

    Article  Google Scholar 

  • 15.

    Singh, D., Cubbage, F., Gonzalez, R. & Abt, R. Locational determinants for wood pellet plants: A review and case study of North and South America. BioResources 11, 7928–7952 (2016).

    Google Scholar 

  • 16.

    U.S. Energy Information Administration (EIA). Monthly Densified Biomass Fuel Report. https://www.eia.gov/biofuels/biomass/#dashboard (2019).

  • 17.

    Birdsey, R. et al. Climate, economic, and environmental impacts of producing wood for bioenergy. Environ. Res. Lett. 13, 050201 (2018).

    ADS  Article  CAS  Google Scholar 

  • 18.

    Strange Olesen, A., Bager, L., Kittler, B., Price, W. & Aguilar, F. Environmental implications of increased reliance of the EU on biomass from the south east US. Brussels DG Environ. https://doi.org/10.2779/30897 (2015).

    Article  Google Scholar 

  • 19.

    Duden, A. S. et al. Modeling the impacts of wood pellet demand on forest dynamics in southeastern United States. Biofuels Bioprod. Biorefining 11, 1007–1029 (2017).

    CAS  Article  Google Scholar 

  • 20.

    Sedjo, R. & Tian, X. Does wood bioenergy increase carbon stocks in forests?. J. For. 110, 304–311 (2012).

    Google Scholar 

  • 21.

    de Oliveira Garcia, W., Amann, T. & Hartmann, J. Increasing biomass demand enlarges negative forest nutrient budget areas in wood export regions. Sci. Rep. 8, 5280 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Searchinger, T. D. et al. Europe’s renewable energy directive poised to harm global forests. Nat. Commun. 9, 3741 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 23.

    Galik, C. S. & Abt, R. C. Sustainability guidelines and forest market response: An assessment of European Union pellet demand in the southeastern United States. GCB Bioenergy 8, 658–669 (2016).

    Article  Google Scholar 

  • 24.

    FORISK. Global Industrial Wood Pellet Demand Forecast and U.S. Wood Bioenergy Update: Q3 2017. https://forisk.com/blog/2017/08/08/global-industrial-wood-pellet-demand-forecast-u-s-wood-bioenergy-update-q3-2017/ (2017).

  • 25.

    Aguilar, F. X., Song, N. & Shifley, S. Review of consumption trends and public policies promoting woody biomass as an energy feedstock in the US. Biomass Bioenergy 35, 3708–3718 (2011).

    Article  Google Scholar 

  • 26.

    Robinson, G., McNulty, J. E. & Krasno, J. S. Observing the counterfactual? The search for political experiments in nature. Polit. Anal. 17, 341–357 (2009).

    Article  Google Scholar 

  • 27.

    Romijn, E. et al. Assessing change in national forest monitoring capacities of 99 tropical countries. For. Ecol. Manag. 352, 109–123 (2015).

    Article  Google Scholar 

  • 28.

    Cornwall, W. Is wood a green source of energy? Scientists are divided. Science (80) 355, 18–21 (2017).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Glasenapp, S. & McCusker, A. Wood energy data: The joint wood energy enquiry. in Wood Energy in the ECE Region Data, Trends and Outlook in Europe, the Commonwealth of Independent States and North America 12 (United Nations Economic Commission for Europe, 2017).

  • 30.

    Wackernagel, M. & Yount, J. D. The ecological footprint: An indicator of progress toward regional sustainability. Environ. Monit. Assess. 51, 511–529 (1998).

    Article  Google Scholar 

  • 31.

    McCann, P. The Economics of Industrial Location: A Logistics-Costs Approach (Springer, Berlin, 2013).

    Google Scholar 

  • 32.

    Goerndt, M. E., Aguilar, F. X. & Skog, K. Drivers of biomass co-firing in US coal-fired power plants. Biomass Bioenergy 58, 158–167 (2013).

    Article  Google Scholar 

  • 33.

    Perez-Verdin, G., Grebner, D. L., Munn, I. A., Sun, C. & Grado, S. C. Economic impacts of woody biomass utilization for bioenergy in Mississippi. For. Prod. J. 58, 75–83 (2008).

    Google Scholar 

  • 34.

    European Commission Joint Research Centre. Renewable Energy—Recast to 2030 (RED II). https://ec.europa.eu/jrc/en/jec/renewable-energy-recast-2030-red-ii (2019).

  • 35.

    FORISK. U.S. Wood Bioenergy Database: Q1 2018. https://forisk.com/ (2018).

  • 36.

    U.S. International Trade Commission (USITC). Domestic Exports 2012–2018 for HS 44 and HS 440131. https://dataweb.usitc.gov/trade (2019).

  • 37.

    U.S. Department of Transportation (USDOT). Major Ports. https://data-usdot.opendata.arcgis.com/datasets/major-ports (2019).

  • 38.

    Blackman, A., Corral, L., Lima, E. S. & Asner, G. P. Titling indigenous communities protects forests in the Peruvian Amazon. Proc. Natl. Acad. Sci. 114, 4123–4128 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Mohebalian, P. M. & Aguilar, F. X. Beneath the canopy: Tropical forests enrolled in conservation payments reveal evidence of less degradation. Ecol. Econ. 143, 64–73 (2018).

    Article  Google Scholar 

  • 40.

    Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database description and user guide version 8.0 for Phase 2. US Dep. Agric. For. Serv. 946, 20 (2018).

    Google Scholar 

  • 41.

    Guldin, R. W., King, S. L. & Scott, C. T. Vision for the Future of FIA: Paean to Progress, Possibilities, and Partners. Proceedings of Sixth Annual For. Invent. Anal. Symp. 2004 Sept. 21–24; Denver, CO. Gen. Tech. Rep. WO-70. Washington, DC U.S. Dep. Agric. For. Serv. 20090, 126 (2006).

  • 42.

    U.S. Department of Agriculture Forest Service. Forest Inventory and Analysis National Program. https://www.fia.fs.fed.us/tools-data/ (2019).

  • 43.

    Bechtold, W. A. & Patterson, P. L. The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures. Gen. Tech. Rep. SRS-80. Asheville, NC: US Department of Agriculture, Forest Service, Southern Research Station. 85 vol. 80. https://www.fs.usda.gov/treesearch/pubs/20371 (2015).

  • 44.

    Barbe, G. Methods of transporting timber in the southern United States. Rep. to Louisiana For. Prod. Dev. Cent. (1993).

  • 45.

    Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. New Dir. Eval. 2009, 75–84 (2009).

    Article  Google Scholar 

  • 46.

    Dundar, B., McGarvey, R. G. & Aguilar, F. X. Identifying Optimal Multi-state collaborations for reducing CO2 emissions by co-firing biomass in coal-burning power plants. Comput. Ind. Eng. 101, 403–415 (2016).

    Article  Google Scholar 

  • 47.

    Woodall, C. W. et al. An overview of the forest products sector downturn in the United States. For. Prod. J. 61, 595–603 (2011).

    Google Scholar 

  • 48.

    U.S. Drought Monitor. GIS Data Files. https://droughtmonitor.unl.edu/Data/GISData.aspx (2019).

  • 49.

    U.S. Department of Agriculture Forest Service. U.S. Forest Change Assessment Viewer ForWarn. https://forwarn.forestthreats.org/fcav2/ (2019).

  • 50.

    Fisher, M., Chaudhury, M. & McCusker, B. Do forests help rural households adapt to climate variability? Evidence from Southern Malawi. World Dev. 38, 1241–1250 (2010).

    Article  Google Scholar 

  • 51.

    Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, London, 2010).

    Google Scholar 

  • 52.

    Millo, G. & Piras, G. splm: Spatial panel data models in R. J. Stat. Softw. 47, 1–38 (2012).

    Article  Google Scholar 

  • 53.

    Kapoor, M., Kelejian, H. H. & Prucha, I. R. Panel data models with spatially correlated error components. J. Econom. 140, 97–130 (2007).

    MathSciNet  MATH  Article  Google Scholar 

  • 54.

    Baltagi, B. Econometric Analysis of Panel Data (Wiley, Oxford, 2008).

    Google Scholar 

  • 55.

    Hausman, J. A. Specification tests in econometrics. Econometrica 46, 1251 (1978).

    MathSciNet  MATH  Article  Google Scholar 

  • 56.

    Crouchet, S. E., Jensen, J., Schwartz, B. F. & Schwinning, S. Tree mortality after a hot drought: Distinguishing density-dependent and -independent drivers and why it matters. Front. For. Glob. Chang. 2, 21 (2019).

    Article  Google Scholar 

  • 57.

    European Commission. Directorate General for Energy. https://ec.europa.eu/energy/en/topics/renewable-energy/biomass (2019).

  • 58.

    European Commission. Memo: The Revised Renewable Energy Directive. https://ec.europa.eu/energy/sites/ener/files/documents/technical_memo_renewables.pdf (2016).

  • 59.

    The Sustainable Biomass Program. Standards. https://sbp-cert.org/documents/standards-documents/standards (2015).

  • 60.

    Stephens, S. L. et al. The effects of forest fuel-reduction treatments in the United States. Bioscience 62, 549–560 (2012).

    Article  Google Scholar 

  • 61.

    Berger, A. L. et al. Ecological impacts of energy-wood harvests: Lessons from whole-tree harvesting and natural disturbance. J. For. 111, 139–153 (2013).

    Google Scholar 

  • 62.

    Janowiak, M. & Webster, C. Promoting ecological sustainability in woody biomass harvesting. J. For. 108, 16–23 (2010).

    Google Scholar 

  • 63.

    Powers, R. F. et al. The North American long-term soil productivity experiment: Findings from the first decade of research. For. Ecol. Manag. 220, 31–50 (2005).

    Article  Google Scholar 

  • 64.

    Parliament, E. Commission Delegated Regulation (EU) 2019/807 of 13 March 2019 supplementing Directive (EU) 2018/2001 of the European Parliament and of the Council as regards the determination of high indirect land-use change-risk feedstock for which a significant expans. Off. J. Eur Union Belgium 20, 20 (2019).

    Google Scholar 

  • 65.

    Hanssen, S. V., Duden, A. S., Junginger, M., Dale, V. H. & van der Hilst, F. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks. GCB Bioenergy 9, 1406–1422 (2017).

    CAS  Article  Google Scholar 

  • 66.

    Wang, W., Dwivedi, P., Abt, R. & Khanna, M. Carbon savings with transatlantic trade in pellets: Accounting for market-driven effects. Environ. Res. Lett. 10, 114019 (2015).

    ADS  Article  Google Scholar 

  • 67.

    U.S. Energy Information Administration (EIA). Monthly Energy Review: Renewable Energy Consumption: Electric power sector (Wood Energy Consumed by the Electric Power Sector). https://www.eia.gov/totalenergy/data/monthly/#renewable (2019).

  • 68.

    Sedjo, R. A. The biomass crop assistance program (BCAP): Some implications for the forest industry. SSRN Electron. J. 20, 10–22. https://doi.org/10.2139/ssrn.1581551 (2010).

    Article  Google Scholar 

  • 69.

    Evans, A. M., Perschel, R. T. & Kittler, B. A. Overview of forest biomass harvesting guidelines. J. Sustain. For. 32, 89–107 (2013).

    Article  Google Scholar 

  • 70.

    Flach, B., Lieberz, S. & Bolla, S. Report: Biofuels Annual. US Foreign Agricultural Service. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=BiofuelsAnnual_TheHague_EuropeanUnion_06-29-2020.(2020).

  • 71.

    European Environment Agency. Renewable Energy in Europe: Key for Climate Objectives, But Air Pollution Needs Attention. https://www.eea.europa.eu/themes/energy/renewable-energy/renewable-energy-in-europe-key (2019).

  • 72.

    U.S. Energy Information Administration (EIA). Annual Energy Outlook 2018 Table: Renewable Energy Generation by Fuel Case: Reference Case|Region: United States. https://www.eia.gov/outlooks/aeo/data/browser/#/?id=67-AEO2018&linechart=~ref2018-d121317a.9-67-AEO2018.3-0 (2018).

  • 73.

    U.S. Environmental Protection Agency (EPA). Emissions and Generation Resource Integrated Database (eGRID). https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid. (2019).

  • 74.

    National Conference of State Legislatures. State Renewable Portfolio Standards and Goals. https://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx (2018).

  • 75.

    Shifley, S. R. et al. Five anthropogenic factors that will radically alter forest conditions and management needs in the Northern United States. For. Sci. 60, 914–925 (2014).

    Article  Google Scholar 

  • 76.

    Wear, D. N. & Greis, J. G. The Southern Forest Futures Project : Summary report/David N. Wear and John G. Greis. General technical report SRS: 168 vol. 168. https://proxy-remote.galib.uga.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsgpr&AN=gprocn839703115&site=eds-live. https://www.srs.fs.fed.us/pubs/gtr/gtrsrs168.pdf (2012).

  • 77.

    Ruta, G. Monitoring Environmental Sustainability (World Bank, Geneva, 2010). https://doi.org/10.1596/27445.

    Google Scholar 

  • 78.

    European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment. https://ec.europa.eu/research/bioeconomy/pdf/ec_bioeconomy_strategy_2018.pdf (2018).

  • 79.

    Council of the European Communities & Commission of the European Communities. Treaty on European Union-Maastricht Treaty. 253 (1993).

  • 80.

    European Union. Treaty of Amsterdam. 144 (1997).

  • 81.

    Dyer, J. M. Revisiting the deciduous forests of eastern North America. Bioscience 56, 341–352 (2006).

    Article  Google Scholar 

  • 82.

    U.S. Energy Information Administration. From EIA-860 Detailed Data with Previous form Data (EIA-860A/860B). https://www.eia.gov/electricity/data/eia860/ (2019).

  • 83.

    U.S. Energy Information Administration. Form EIA-923 Detailed Data with Previous form Data (EIA-906/920). https://www.eia.gov/electricity/data/eia923/ (2019).

  • 84.

    Gray, J. A., Bentley, J. W., Cooper, J. A. & Wall, D. J. United States Department of Agriculture Southern Pulpwood Production, 2016. e-Resource Bulletin SRS–222. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station https://www.fs.usda.gov/treesearch/pubs/56531 (2018).

  • 85.

    Piva, R. J., Bentley, J. W. & Hayes, S. W. National pulpwood production, 2010. Resour. Bull. NRS-89. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station https://www.fs.usda.gov/treesearch/pubs/45928 (2014). https://doi.org/10.2737/NRS-RB-89.

  • 86.

    Prestemon, J. et al. Locations of Wood-Using Mills in the Continental U.S. https://www.srs.fs.usda.gov/econ/data/mills/ (2005).

  • 87.

    Johnson, T. G. & Steppleton, C. D. United States Department of Agriculture Southern Pulpwood Production, 2005. Resour. Bull. SRS-116. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. https://www.fs.usda.gov/treesearch/pubs/27728 (2007).

  • 88.

    Johnson, T. G., Steppleton, C. D. & Bentley, J. W. United States Department of Agriculture Southern Pulpwood Production, 2008. Resour. Bull. SRS–165. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. https://www.fs.usda.gov/treesearch/pubs/34565 (2010).

  • 89.

    Bentley, J. W. & Steppleton, C. D. Southern pulpwood production, 2011. Resour. Bull. SRS-RB-194. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. https://www.fs.usda.gov/treesearch/pubs/43626 (2013).

  • 90.

    Gray, J. A., Bentley, J. W., Cooper, J. A. & Wall, D. J. United States Department of Agriculture Southern Pulpwood Production, 2014. e-Resource Bulletin SRS–219. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. https://www.fs.usda.gov/treesearch/pubs/56235 (2018).

  • 91.

    U.S. Census Bureau. Cartographic Boundary Files. https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html (2019).

  • 92.

    U.S. Census Bureau. County Population Totals. https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-total.html (2020).

  • 93.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (2019).

  • 94.

    Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439 (2018).

    Article  Google Scholar 

  • 95.

    Flowerdew, R. & Green, M. Areal interpolation and types of data. In Spatial Analysis and GIS (eds Fotheringham, S. & Rogerson, P.) 73–75 (CRC Press, Boca Raton, 2014).

    Google Scholar 

  • 96.

    Goerndt, M. E., Wilson, B. T. & Aguilar, F. X. Comparison of small area estimation methods applied to biopower feedstock supply in the Northern US region. Biomass Bioenergy 121, 64–77 (2019).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century