in

Helminth eggs from early cretaceous faeces

  • 1.

    Araújo, A. et al. Invited review: Paleoparasitology—Perspectives with new techniques. Rev. Inst. Med. Trop. S. P. 40(6), 371–376 (1998).

    Article  Google Scholar 

  • 2.

    De Baets, K., Dentzien-Dias, P., Harrison, G. W. M., Littlewood, D. T. J. & Parry, L. A. 2020) Identification and macroevolution of parasites (topics in geobiology. In The Evolution and Fossil Record of Parasitism (eds De Baets, K. & Huntley, J.) (Springer, New York, 2020).

    Google Scholar 

  • 3.

    Dentzien-Dias, P. C. et al. Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS ONE 8(1), e55007. https://doi.org/10.1371/journal.pone.0055007 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Hugot, J. P. et al. Discovery of a 240 million-year-old nematode parasite egg in a cynodont coprolite sheds light on the early origin of pinworms in vertebrates. Parasite Vector 7(1), 486. https://doi.org/10.1186/s13071-014-0486-6 (2014).

    Article  Google Scholar 

  • 5.

    Da Silva, P. A. et al. A new ascarid species in cynodont coprolite dated of 240 million years. An. Acad. Bras. Cienc. 86(1), 265–296 (2014).

    Article  PubMed  Google Scholar 

  • 6.

    Cardia, D. F. F., Bertini, R. J., Camossi, L. G. & Letizio, L. A. The first record of ascaridoidea eggs discovered in crocodyliformes hosts from the upper Cretaceous of Brazil. Rev. Bras. Paleontol. 21(3), 238–244 (2018).

    Article  Google Scholar 

  • 7.

    Poinar, G. Jr. & Boucot, A. J. Evidence of intestinal parasites of dinosaurs. Parasitology 133(2), 245–249 (2006).

    Article  PubMed  Google Scholar 

  • 8.

    Beltrame, M. O., Fugassa, M. H., Barberena, R., Udrizar-Sauthier, D. E. & Sardella, N. H. New record of anoplocephalid eggs (Cestoda: Anoplocephalidae) collected from the rodent coprolites from archaeological and paleontological sites of Patagonia, Argentina. Parasitol. Int. 62, 431–434 (2013).

    Article  PubMed  Google Scholar 

  • 9.

    Beltrame, M. O., Tietze, E., Pérez, A. E., Bellusci, A. & Sardella, N. H. Ancient parasites from endemic deer from “Cueva Parque Diana” archeological site, Patagonia, Argentina. Parasitol. Res. 116(2), 1523–1531 (2017).

    Article  PubMed  Google Scholar 

  • 10.

    Fugassa, M. H., Petrigh, R. S., Fernández, P. M., Carballido Calatayud, M. & Belleli, C. Fox parasites in pre-Columbian times: Evidence from the past to understand the current helminth assemblages. Acta Trop. 185, 380–384 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Sianto, L. et al. Helminths in feline coprolites up to 9000 years in the Brazilian Northeast. Parasitol. Int. 63, 851–857 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Barrios-de Pedro, S. Integrative Study of the Coprolites from Las Hoyas (upper Barremian; La Huérguina Formation, Cuenca, Spain). Unpublished PhD thesis. Universidad Autónoma de Madrid (Spain) (2019).

  • 13.

    Poyato-Ariza, F. J. & Buscalioni, A. D. Las Hoyas: A Cretaceous Wetland (Dr. Friedrich Pfeil Verlag, München, 2016).

    Google Scholar 

  • 14.

    Martin, T. et al. A Cretaceous eutricondont and integument evolution in early mammals. Nature 526, 380–384 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Iniesto, M. et al. A.I. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates. Sci. Rep. 6, 1–12. https://doi.org/10.1038/srep25716 (2016).

    CAS  Article  Google Scholar 

  • 16.

    Iniesto, M. et al. Plant tissue decay in long-term experiments with microbial mats. Geosci. J. 8(11), 387. https://doi.org/10.3390/geosciences8110387 (2018).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Poyato-Ariza, F. J., Talbot, M. R., Fregenal-Martínez, M. A., Meléndez, N. & Wenz, S. First isotopic and multidisciplinary evidence for nonmarine coelacanths and pycnodontiform fishes: Palaeoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 64–84 (1998).

    Article  Google Scholar 

  • 18.

    Buscalioni, A. D. & Fregenal-Martínez, M. A. A holistic approach to the palaeoecology of Las Hoyas Konservat-Lagerstätte (La Huérguina Formation, Lower Cretaceous, Iberian ranges, Spain). J. Iber. Geol. 36(2), 297–326 (2010).

    Article  Google Scholar 

  • 19.

    Fregenal-Martínez, M. A., Meléndez, N., Muñoz-García, M. B., Elez, J. & de la Horra, R. The stratigraphic record of the late Jurassic-early Cretaceous rifting in the Alto Tajo-Serranía de Cuenca region (Iberian Ranges, Spain): Genetic and structural evidences for a revision and a new lithostratigraphic proposal. Rev. Soc. Geol. Esp. 30(1), 113–142 (2017).

    Google Scholar 

  • 20.

    Buscalioni, A. D. et al. The wetlands of Las Hoyas. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 238–253 (Dr. Friedrich Pfeil Verlag, München, 2016).

    Google Scholar 

  • 21.

    Timm, T., Vinn, O. & Buscalioni, A. D. Soft-bodied annelids (Oligochaeta) from the lower Cretaceous (La Huerguina formation) of the Las Hoyas Konservat-Lagerstätte, Spain. Neues. Jahrb. Geol. P.-A. 280(3), 315–324 (2016).

    Article  Google Scholar 

  • 22.

    Buatois, L. A., Fregenal-Martínez, M. A. & de Gibert, J. M. Short-term colonization trace-fossil assemblages in a carbonate lacustrine Konservat-Lagerstätte (Las Hoyas fossil site, Lower Cretaceous, Cuenca, centra Spain). Facies 43, 145–156 (2000).

    Article  Google Scholar 

  • 23.

    de Gibert, J. M., Moratalla, J. J., Mángano, M. G. & Buatois, L. A. Ichnoassemblage (trace fossils). In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 195–201 (Dr. Friedrich Pfeil Verlag, München, 2016).

    Google Scholar 

  • 24.

    Barrios-de-Pedro, S., Poyato-Ariza, F. J., Moratalla, J. J. & Buscalioni, A. D. Exceptional coprolite association from the early Cretaceous continental Lagerstätte of Las Hoyas, Cuenca, Spain. PLoS ONE 13(5), E0196982. https://doi.org/10.1371/journal.pone.0196982 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Barrios-de Pedro, S., Chin, K. & Buscalioni, A. D. The late Barremian ecosystem of Las Hoyas sustained by fishes and shrimps as inferred from coprofabrics. Cretac. Res. 110, 104409. https://doi.org/10.1016/j.cretres.2020.104409 (2020).

    Article  Google Scholar 

  • 26.

    Poyato-Ariza, F. J. & Martín-Abad, H. Osteichthyan fishes. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 114–132 (Dr. Friedrich Pfeil Verlag, München, 2016).

    Google Scholar 

  • 27.

    de Gibert, J. M. et al. The fish trace fossil Undichnafrom the Cretaceous of Spain. Paleontol. 42, 409–427 (2003).

    Article  Google Scholar 

  • 28.

    Sprent, J. F. A. Ascaridoid nematodes of amphibians and reptiles: Dujardinascaris. Supplementary review article. J. Helminthol. 51, 251–285 (1977).

    Google Scholar 

  • 29.

    Foreyt, W. J. Veterinary Parasitology. Reference Manual (Blackwell Publishing Profesional, Iowa, 2001).

    Google Scholar 

  • 30.

    Sullivan, T. A Color Atlas of Parasitology (University of San Francisco, San Francisco, 2004).

    Google Scholar 

  • 31.

    Rajesh, N. V., Kalpana Devi, R., Jayathangaraj, M. G., Raman, M. & Sridhar, R. Intestinal parasites in captive mugger crocodiles (Crocodylus palustris) in south India. J. Trop. Med. Parasit. 37(2), 69–73 (2014).

    Google Scholar 

  • 32.

    King, S. & Scholz, T. Trematodes of the family Opisthorchiidae: A minireview, Korean. J. Parasitol. 39(3), 209–221 (2001).

    CAS  Google Scholar 

  • 33.

    Olsen, O. W. Animal Parasites: Their Life Cycles and Ecology 3rd edn. (University Park Press, Baltimore, London, 1974).

    Google Scholar 

  • 34.

    Chen, T. C. General Parasitology 2nd edn. (Academic Press Inc., Florida, 1986).

    Google Scholar 

  • 35.

    Gegenbaur, C. Gundriss der Vergleichenden Anatomie (Wilhelm Engelmann, Leipzig, 1859).

    Google Scholar 

  • 36.

    Rudolphi, C. A. Entozoorum Sive Vermium Intesstinalium (Historia Naturalis, Amsterdam, 1808).

    Google Scholar 

  • 37.

    Yamaguti, S. The Digenetic-Trematodes of Vertebrates Volume I (Parts 1 and 2) (Interscience Publisjers Inc., New York, 1958).

    Google Scholar 

  • 38.

    Ditrich, O., Giboda, M., Scholz, T. & Beer, S. A. Comparative morphology of eggs of the Haplorchiinae (Trematoda: Heterophyidae) and some other medically important heterophyid and opisthorchiid flukes. Folia. Parasit. 39, 123–132 (1992).

    CAS  Google Scholar 

  • 39.

    Cobb, N. A. The english word “nema”. J. A. M. A. 98, 75 (1932).

    Google Scholar 

  • 40.

    Skrjabin, K. I. & Karokhin, V. I. On the rearrangement of nematodes of the order Ascaridata Skrjabin, 1915. Dokl. Akad. Nauk. Soiuza. Sov. Sotsialisticheskikh. Resp. 48(4), 297–299 (1945).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Ubelaker, J. E. & Allison, V. F. Scanning electron microscopy of the eggs of Ascaris lumbricoides, A. suum, Toxocara canis, and T. mystax. J. Parasitol. 61(5), 802–807 (1975).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Dujardin, F. Histoire Naturelle des Helminthes ou Vers Intestinaux (Librairie Encyclopedique de Roret, Paris, 1845).

    Google Scholar 

  • 43.

    Cardoso, A. M. C., de Souza, A. J. S., Menezes, R. C., Pereira, W. L. A. & Tortelly, R. Gastric lesions in free-ranging black caimans (Melanosuchus niger) associated with Brevimulticaecum species. Vet. Pathol. 50(4), 582–584 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Tellez, M. & Nifong, J. Gastric nematode diversity between estuarine and inland freshwater populations of the American alligator (Alligator mississippienses, daudin 1802), and the prediction of intermediate hosts. Int. J. Parasitol.-Par. 3, 227–235 (2014).

    Article  Google Scholar 

  • 45.

    Villegas, A. & González-Solís, D. Gastrointestinal helminth parasites of the American crocodile (Crocodylus Acutus) in southern Quintana, Roo, Mexico. Herpetol. Conserv. Biol. 4(3), 346–351 (2009).

    Google Scholar 

  • 46.

    Cardia, D. F. F., Bertini, R. J., Camossi, L. G. & Letizio, L. A. First record of Acanthocephala parasites eggs in coprolites preliminary assigned to Crocodyliformes from the Adamantina Formation (Bauru Group, upper Cretaceous), Sao Paulo, Brazil. An. Acad. Bras. Cienc. 91(2), e20170848. https://doi.org/10.1590/0001-3765201920170848 (2019).

    Article  Google Scholar 

  • 47.

    Qvarnström, M., Niedźwiedzki, G. & Žigaitė, Ž. Vertebrate coprolites (fossil faeces): An underexplored Konservat-Lagerstätte. Earth Sci. Rev. 162, 44–57 (2016).

    ADS  Article  Google Scholar 

  • 48.

    Uddin, M. H., Bae, Y. M., Choi, M. H. & Hong, S. T. Production and deformation of Clonorchis sinensis eggs during in vitro maintenance. PLoS ONE 7(12), e52676. https://doi.org/10.1371/journal.pone.0052676 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Grobbelaar, A., Van As, L. L., Butler, H. J. B. & Van As, J. G. Ecology of Diplostomid (Trematoda: Digenea) infection in freshwater fish in Southern Africa. Afr. Zool. 49(2), 222–232 (2014).

    Article  Google Scholar 

  • 50.

    Schell, S. C. How to Know the Trematodes (William C. Brown Company Publishers, Iowa, 1970).

    Google Scholar 

  • 51.

    McConnaughey, M. Life Cycle of Parasites. Reference Module in Biomedical Sciences (Elsevier, Amsterdam, 2014).

    Google Scholar 

  • 52.

    Tsubokawa, D. et al. Collection methods of trematode eggs using experimental animal models. Parasitol. Int. 65, 584–587 (2016).

    Article  PubMed  Google Scholar 

  • 53.

    Wolf, D. et al. Diagnosis of gastrointestinal parasites in reptiles: Comparison of two coprological methods. Acta. Vet. Scand. 56(1), 44. https://doi.org/10.1186/s13028-014-0044-4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Mehlhorn, H. Encyclopedia of Parasitology (Springer, Berlin, 2016).

    Google Scholar 

  • 55.

    Dai, W. et al. Phylogenomic perspective on the relationships and evolutionary history of the major otocephalan lineages. Sci. Rep. 8, 205. https://doi.org/10.1038/s41598-017-18432-5 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Kappas, I., Vittas, S., Pantzartzi, C. N., Drosopoulou, E. & Scouras, Z. G. A time-calibrated mitogenome phylogeny of catfish (Teleostei: Siluriformes). PLoS ONE 11(12), E0166988. https://doi.org/10.1371/journal.pone.0166988 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Anderson, R. C. Nematode Parasites of Vertebrates: Their Development and Transmission 2nd edn. (CABI Publishing, Wallingford, 2000).

    Google Scholar 

  • 58.

    Valles-Vega, I., Molina-Fernández, D., Benítez, R., Hernández-Trujillo, S. & Adroher, F. J. Early development and life cycle of Contracaecum multipapillatum s.l. from a brown pelican Pelecanus occidentalis in the Gulf of California, Mexico. Dis. Aquat. Organ. 125, 167–178 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Klimpel, S., Palm, H. W., Rückert, S. & Piatkowski, U. The life cycle of Anisakis simplex in the Norwegian Deep (northern North Sea). Parasitol. Res. 94(1), 1–9 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Cardia, D. F. F., Bertini, R. J., Camossi, L. G. & Letizio, L. A. Two new species of ascaridoid nematodes in Brazilian Crocodylomorpha from the upper Cretaceous. Parasitol. Int. 72, 101947. https://doi.org/10.1016/j.parint.2019.101947 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Buscalioni, A. D. & Chamero, B. Crocodylomorpha. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 162–169 (Dr. Friedrich Pfeil Verlag, München, 2016).

    Google Scholar 

  • 62.

    Esch, G. W., Barger, M. A. & Fellis, K. J. The transmission of digenetic trematodes: Style, elegance, complexity. Integr. Comp. Biol. 42, 304–312 (2002).

    Article  PubMed  Google Scholar 

  • 63.

    Delvene, G. & Clive Munt, M. Mollusca. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 57–63 (Dr. Friedrich Pfeil Verlag, München, 2016).

    Google Scholar 

  • 64.

    Delclós, X. & Soriano, C. Insecta. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 70–88 (Dr. Friedrich Pfeil Verlag, München, 2016).

    Google Scholar 

  • 65.

    Garassino, A. Decapoda. In Las Hoyas: A Cretaceous Wetland (eds Poyato-Ariza, F. J. & Buscalioni, A. D.) 98–102 (Dr. Friedrich Pfeil Verlag, München, 2016).

    Google Scholar 

  • 66.

    Heimhofer, U. et al. Deciphering the depositional environment of the laminated Crato fossil beds (early Cretaceous, Araripe Basin, North-eastern Brazil. Sedimentology 57(2), 677–694 (2010).

    ADS  CAS  Article  Google Scholar 

  • 67.

    de Gibert, J. M., Fregenal-Martínez, M. A., Buatois, L. A. & Mángano, M. G. Trace fossils and their palaeoecological significance in lower Cretaceous lacustrine conservation deposits, El Montsec, Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 156, 89–101 (2000).

    Article  Google Scholar 

  • 68.

    Ferreira, L. F., Reinhard, K. & Araújo, A. Fundamentos da Paleoparasitología 1st edn. (Editora Fiocruz, Rio de Janeiro, 2011).

    Google Scholar 

  • 69.

    Ritchie, L. S. An ether sedimentation technique for routine stool examination. Bull. U. S. Army. Med. Dep. 8, 326 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Rasband, W.S. ImageJ. (U.S. National Institutes of Health, Bethesda, 1997–2018). https://imagej.nih.gov/ij/.


  • Source: Ecology - nature.com

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century

    Technique reveals deeper insights into the makeup of nacre, a natural material