in

Closely related species show species-specific environmental responses and different spatial conservation needs: Prionailurus cats in the Indian subcontinent

  • 1.

    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 9, 323–329 (2019).

    ADS  Article  Google Scholar 

  • 2.

    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  • 3.

    Zanin, M. & dos Neves, B. S. Current felid (Carnivora: Felidae) distribution, spatial bias, and occurrence predictability: testing the reliability of a global dataset for macroecological studies. Acta Oecol. 101, 103–488 (2019).

    Article  Google Scholar 

  • 4.

    Lomolino, M. V. & Heaney, L. R. Frontiers of Biogeography: New Directions in the Geography of Nature. (sidalc.net, 2004).

  • 5.

    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 1–8 (2015).

    Google Scholar 

  • 6.

    Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Raxworthy, C. J. et al. Predicting distributions of known and unknown reptile species in Madagascar. Nature 426, 837–841 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Hu, J. et al. Niche conservatism in Gynandropaa frogs on the southeastern Qinghai-Tibetan Plateau. Sci. Rep. 6, 32624 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Morinière, J. et al. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Sci. Rep. 6, 26340 (2016).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 10.

    Liu, H. et al. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae. Sci. Rep. 5, 12246 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Liu, H., Edwards, E. J., Freckleton, R. P. & Osborne, C. P. Phylogenetic niche conservatism in C4 grasses. Oecologia 170, 835–845 (2012).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Crisp, M. D. et al. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Aguirre-Gutiérrez, J., Serna-Chavez, H. M., Villalobos-Arambula, A. R., de la Rosa, J. A. P. & Raes, N. Similar but not equivalent: ecological niche comparison across closely-related Mexican white pines. Div. Dist. 21, 245–257 (2014).

    Article  Google Scholar 

  • 15.

    Perret, D. L., Leslie, A. B. & Sax, D. F. Naturalized distributions show that climatic disequilibrium is structured by niche size in pines (Pinus L.). Glob. Ecol. Biogeogr. 28, 429–441 (2018).

    Google Scholar 

  • 16.

    Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J. & Moritz, C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58, 1781–1793 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Kozak, K. H. & Wiens, J. J. Climatic zonation drives latitudinal variation in speciation mechanisms. Proc. Biol. Sci. 274, 2995–3003 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Moussalli, A., Moritz, C., Williams, S. E. & Carnaval, A. C. Variable responses of skinks to a common history of rainforest fluctuation: concordance between phylogeography and palaeo-distribution models. Mol. Ecol. 18, 483–499 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Afonso Silva, A. C. et al. Tropical specialist vs. climate generalist: Diversification and demographic history of sister species of Carlia skinks from northwestern Australia. Mol. Ecol. 26, 4045–4058 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Logan, M. L., Huynh, R. K., Precious, R. A. & Calsbeek, R. G. The impact of climate change measured at relevant spatial scales: new hope for tropical lizards. Glob. Chang. Biol. 19, 3093–3102 (2013).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Moritz, C. et al. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322, 261–264 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Kamilar, J. M. & Muldoon, K. M. The climatic niche diversity of malagasy primates: a phylogenetic perspective. PLoS ONE 5, e11073 (2010).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 23.

    Braz, A. G., Lorini, M. L. & Vale, M. M. Climate change is likely to affect the distribution but not parapatry of the Brazilian marmoset monkeys (Callithrix spp.). Div. Dist. 25, 536–550 (2018).

    Article  Google Scholar 

  • 24.

    Cooper, N., Freckleton, R. P. & Jetz, W. Phylogenetic conservatism of environmental niches in mammals. Proc. Biol. Sci. 278, 2384–2391 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Lyu, Y., Wang, X. & Luo, J. Geographic patterns of insect diversity across China’s nature reserves: the roles of niche conservatism and range overlapping. Ecol. Evol. 10, 3305–3317 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Hiller, A. E. et al. Niche conservatism predominates in adaptive radiation: comparing the diversification of Hawaiian arthropods using ecological niche modelling. Biol. J. Linn. Soc. Lond. 127, 479–492 (2019).

    Article  Google Scholar 

  • 27.

    Kabir, M. et al. Habitat suitability and movement corridors of grey wolf (Canis lupus) in Northern Pakistan. PLoS ONE 12, e0187027 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 28.

    Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. Biol. Sci. 280, 20122649 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).

    Article  Google Scholar 

  • 30.

    Molotoks, A. et al. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Chang. Biol. 24, 5895–5908 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. Global biodiversity conservation: the critical role of hotspots. Biodivers. Hotspots https://doi.org/10.1007/978-3-642-20992-5_1 (2011).

    Article  Google Scholar 

  • 32.

    Johnson, W. E. et al. The late Miocene radiation of modern Felidae: a genetic assessment. Science 311, 73–77 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Tamma, K., Marathe, A. & Ramakrishnan, U. Past influences present: mammalian species from different biogeographic pools sort environmentally in the Indian subcontinent. Front. Biogeogr. 8 (2016).

  • 34.

    Mukherjee, S., Duckworth, J. W., Silva, A., Appel, A. & Kittle, A. Prionailurus rubiginosus. IUCN Red List Threat. Species https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T18149A50662471.en (2016).

    Article  Google Scholar 

  • 35.

    Mukherjee, S. et al. Prionailurus viverrinus. IUCN Red List Threat. Species https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T18150A50662615.en (2016).

    Article  Google Scholar 

  • 36.

    Ross, J. et al. Prionailurus bengalensis. IUCN Red List Threat. Species https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T18146A50661611.en (2015).

    Article  Google Scholar 

  • 37.

    Nowell, K. & Jackson, P. Wild cats: status survey and conservation action plan ((IUCN, Gland, Switzerland, 1996).

  • 38.

    Sunquist, M. & Sunquist, F. Wild Cats of the World (University of Chicago Press, Chicago, 2012).

    Google Scholar 

  • 39.

    Pocock, R. I. The Fauna of British India Including Ceylon and Burma Vol. 1 (Taylor And Francis Ltd, London, 1939).

    Google Scholar 

  • 40.

    Mukherjee, S. et al. Ecology driving genetic variation: a comparative phylogeography of jungle cat (Felis chaus) and leopard cat (Prionailurus bengalensis) in India. PLoS ONE 5, e13724 (2010).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 41.

    Gray, T. N. E. et al. Felis chaus. IUCN Red List Threat. Species https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T8540A50651463.en (2016).

    Article  Google Scholar 

  • 42.

    Boitani, L. et al. What spatial data do we need to develop global mammal conservation strategies?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2623–2632 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Bartholomé, E. & Belward, A. S. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 26, 1959–1977 (2005).

    ADS  Article  Google Scholar 

  • 44.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modeling (2011).

  • 45.

    Grassman, L. I. Jr., Tewes, M. E., Silvy, N. J. & Kreetiyutanont, K. Spatial organization and diet of the leopard cat (Prionailurus bengalensis) in north-central Thailand. J. Zool. 266, 45–54 (2005).

    Article  Google Scholar 

  • 46.

    Thatte, P. et al. Human footprint differentially impacts genetic connectivity of four wide-ranging mammals in a fragmented landscape. Divers. Distrib. 7, 247 (2019).

    Google Scholar 

  • 47.

    Kalle, R., Ramesh, T., Qureshi, Q. & Sankar, K. Predicting the distribution pattern of small carnivores in response to environmental factors in the Western Ghats. PLoS ONE 8, e79295 (2013).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 48.

    Wilting, A. et al. Modelling the species distribution of flat-headed cats (Prionailurus planiceps), an endangered South-East Asian small felid. PLoS ONE 5, e9612 (2010).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 49.

    Srivathsa, A., Parameshwaran, R., Sharma, S. & Ullas Karanth, K. Estimating population sizes of leopard cats in the Western Ghats using camera surveys. J. Mammal. 96, 742–750 (2015).

    Article  Google Scholar 

  • 50.

    Bashir, T., Bhattacharya, T., Poudyal, K., Sathyakumar, S. & Qureshi, Q. Integrating aspects of ecology and predictive modelling: implications for the conservation of the leopard cat (Prionailurus bengalensis) in the Eastern Himalaya. Acta Theriol. 59, 35–47 (2014).

    Article  Google Scholar 

  • 51.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 52.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  • 53.

    Mayaux, P. et al. Validation of the global land cover 2000 map. IEEE Trans. Geosci. Remote Sens. 44, 1728–1739 (2006).

    ADS  Article  Google Scholar 

  • 54.

    Hijmans, R. J. raster: geographic data analysis and modelling (2014).

  • 55.

    Mukherjee, S., Goyal, S. P., Johnsingh, A. J. T. & Leite, M. R. The importance of rodents in the diet of jungle cat (Felis chaus), caracal (Caracal caracal) and golden jackal (Canis aureus) in Sariska Tiger Reserve, Rajasthan, India. J. Zool. 262, 405–411 (2004).

    Article  Google Scholar 

  • 56.

    Shehzad, W. et al. Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol. 21, 1951–1965 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Rajaratnam, R., Sunquist, M., Rajaratnam, L. & Ambu, L. Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo. J. Trop. Ecol. 23, 209–217 (2007).

    Article  Google Scholar 

  • 58.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).

    Article  Google Scholar 

  • 59.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Anderson, R. P. & Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol. Modell. 222, 2796–2811 (2011).

    Article  Google Scholar 

  • 61.

    Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).

    Article  Google Scholar 

  • 62.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article  Google Scholar 

  • 63.

    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).

    Article  Google Scholar 

  • 64.

    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Article  Google Scholar 

  • 65.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?: How to use pseudo-absences in niche modelling?. Methods Ecol. Evol. 3, 327–338 (2012).

    Article  Google Scholar 

  • 66.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Div. Dist. 17, 43–57 (2011).

    Article  Google Scholar 

  • 67.

    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).

    Article  Google Scholar 

  • 68.

    Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography 41, 726–736 (2017).

    Article  Google Scholar 

  • 69.

    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell. 133, 225–245 (2000).

    Article  Google Scholar 

  • 70.

    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).

    PubMed  Article  Google Scholar 

  • 71.

    Schoener, T. W. The anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).

    Article  Google Scholar 

  • 72.

    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).

    PubMed  Article  Google Scholar 

  • 73.

    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).

    Article  Google Scholar 

  • 74.

    Swets, J. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 75.

    Ferro, C. A. T. & Stephenson, D. B. Extremal dependence indices: improved verification measures for deterministic forecasts of rare binary events. Weather Forecast. 26, 699–713 (2011).

    ADS  Article  Google Scholar 

  • 76.

    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2011).

    Article  Google Scholar 

  • 77.

    Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).

    Article  Google Scholar 

  • 78.

    UNEP-WCMC & IUCN. Protected Planet:The World Database on Protected Areas. Protected Planethttps://www.protectedplanet.net (2018).

  • 79.

    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2018).

    Google Scholar 

  • 80.

    Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Wilting, A. et al. Evolutionary history and conservation significance of the Javan leopard Panthera pardus melas. J. Zool. 299, 239–250 (2016).

    Article  Google Scholar 

  • 82.

    Cooper, D. M. et al. Predicted pleistocene-holocene range shifts of the tiger (Panthera tigris). Divers. Distrib. 22, 1199–1211 (2016).

    Article  Google Scholar 

  • 83.

    McSweeney, C. F., Jones, R. G., Lee, R. W. & Rowell, D. P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44, 3237–3260 (2014).

    Article  Google Scholar 

  • 84.

    Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).

    Article  Google Scholar 

  • 85.

    Rowan, J. et al. Geographically divergent evolutionary and ecological legacies shape mammal biodiversity in the global tropics and subtropics. Proc. Natl. Acad. Sci. USA 117, 1559–1565 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 86.

    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).

    Article  Google Scholar 

  • 87.

    Hof, A. R., Jansson, R. & Nilsson, C. Future climate change will favour non-specialist mammals in the (sub)arctics. PLoS ONE 7, e52574 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 88.

    Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. Rise of the generalists: evidence for climate driven homogenization in avian communities. Glob. Ecol. Biogeogr. 21, 568–578 (2011).

    Article  Google Scholar 

  • 89.

    Pradervand, J.-N., Pellissier, L., Randin, C. F. & Guisan, A. Functional homogenization of bumblebee communities in alpine landscapes under projected climate change. Clim. Change Responses 1, 1 (2014).

    Article  Google Scholar 

  • 90.

    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Ecology. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 91.

    Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. Biol. Sci. 276, 1939–1948 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 92.

    Araújo, M. B. et al. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8–15 (2008).

    Article  Google Scholar 

  • 93.

    Fordham, D. A., Saltré, F., Brown, S. C., Mellin, C. & Wigley, T. M. L. Why decadal to century timescale palaeoclimate data are needed to explain present-day patterns of biological diversity and change. Glob. Chang. Biol. 24, 1371–1381 (2018).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 94.

    Fordham, D. A. et al. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358 (2017).

    Article  Google Scholar 

  • 95.

    Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. USA 105, 16089–16094 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 96.

    Pressey, R. L. et al. How well protected are the forests of north-eastern New South Wales? Analyses of forest environments in relation to formal protection measures, land tenure, and vulnerability to clearing. For. Ecol. Manag. 85, 311–333 (1996).

    Article  Google Scholar 

  • 97.

    Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 98.

    Connor, T. et al. Effects of grain size and niche breadth on species distribution modeling. Ecography 41, 1270–1282 (2017).

    Article  Google Scholar 

  • 99.

    Seo, C., Thorne, J. H., Hannah, L. & Thuiller, W. Scale effects in species distribution models: implications for conservation planning under climate change. Biol. Lett. 5, 39–43 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 100.

    Latinne, A. et al. Influence of past and future climate changes on the distribution of three Southeast Asian murine rodents. J. Biogeogr. 42, 1714–1726 (2015).

    Article  Google Scholar 

  • 101.

    Radchuk, V., Kramer-Schadt, S., Fickel, J. & Wilting, A. Distributions of mammals in Southeast Asia: the role of the legacy of climate and species body mass. J. Biogeogr. https://doi.org/10.1111/jbi.13675 (2019).

    Article  Google Scholar 

  • 102.

    Patel, R. P. et al. Genetic structure and phylogeography of the leopard cat (Prionailurus bengalensis) inferred from mitochondrial genomes. J. Hered. 108, 349–360 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 103.

    Sreehari, R. & Nameer, P. O. Small carnivores of Parambikulam Tiger Reserve, southern Western Ghats, India. J. Threat. Taxa 8, 9306 (2016).

    Article  Google Scholar 

  • 104.

    Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years. Rev. Geophys. 54, 162–219 (2016).

    ADS  Article  Google Scholar 

  • 105.

    Luo, S.-J. et al. Sympatric Asian felid phylogeography reveals a major Indochinese-Sundaic divergence. Mol. Ecol. 23, 2072–2092 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 106.

    Mukherjee, S., Adhya, T., Thatte, P. & Ramakrishnan, U. Survey of the fishing cat prionailurus viverrinus Bennett, 1833 (Carnivora: Felidae) and some aspects impacting its conservation in India. J. Threat. Taxa 04, 3355–3361 (2012).

    Article  Google Scholar 

  • 107.

    Shekhar Palei, H., Palei, H. S., Das, U. P. & Debata, S. The vulnerable fishing cat Prionailurus viverrinus in Odisha, eastern India: status and conservation implications. Zool. Ecol. 28, 69–74 (2018).

    Article  Google Scholar 

  • 108.

    Nayak, S., Shah, S. & Borah, J. First record of rusty-spotted cat Prionailurus rubiginosus (Mammalia: Carnivora: Felidae) from Ramgarh-Vishdhari Wildlife Sanctuary in semi-arid landscape of Rajasthan, India. J. Threat. Taxa 9, 9761 (2017).

    Article  Google Scholar 

  • 109.

    Lamichhane, B. R. et al. Rusty-spotted cat: 12th cat species discovered in Western Terai of Nepal. Cat News 64, 30–32 (2016).

    Google Scholar 

  • 110.

    Anwar, M. & Vattakavan, J. Rusty spotted cat in Katerniaghat Wildlife Sanctuary, Uttar Pradesh State, India. Cat News 56, 12–13 (2012).

    Google Scholar 

  • 111.

    Harihar, A., Chanchani, P., Pariwakam, M., Noon, B. R. & Goodrich, J. Defensible inference: questioning global trends in tiger populations. Conserv. Lett. 10, 502–505 (2017).

    Article  Google Scholar 

  • 112.

    Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).

    Article  Google Scholar 

  • 113.

    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. Biol. Sci.285 (2018).

  • 114.

    Prestele, R. et al. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob. Chang. Biol. 22, 3967–3983 (2016).

    ADS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century

    Technique reveals deeper insights into the makeup of nacre, a natural material