Angilletta, M. J. Jr. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).
Atkinson, D. Temperature and organism size: a biological law for ectortherms?. Adv. Ecol. Res. 25, 1–58 (1994).
Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12, 235–239 (1997).
Hynes, H. B. N. The ecology of stream insects. Ann. Rev. Entomol. 15, 25–42 (1970).
Sweeney, B. W. & Vannote, R. L. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200, 444–446 (1978).
Sweeney, B. W. & Vannote, R. L. Ephemerella mayflies of Whie Clay Creek: bioenergetic and ecological relationships among six coexisting species. Ecology 62, 1353–1369 (1981).
Sweeney, B. W. & Vannote, R. L. Influence of food quality and temperature on life-history characteristics of the parthenogenetic mayfly Cloeon triangulifer. Freshw. Biol. 14, 621–630 (1984).
Sweeney, B. W., Funk, D. H., Jackson, J. K., Camp, A. A. & Buchwalter, D. Why a mayfly Cloeon dipterum (Ephemeroptera: Baetidae) gets smaller as temperatures warm. Freshw. Sci. 37, 64–81 (2018).
Caissie, D. The thermal regime of rivers: a review. Freshw. Biol. 51, 1389–1406 (2006).
Haidekker, A. & Hering, D. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquat. Ecol. 42, 463–481 (2008).
Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 365, 2093–2106 (2010).
Woodward, G. et al. The effects of climatic fluctuations and extreme events on running water ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150274 (2016).
Carpenter, S. R., Fisher, S. G., Grimm, N. B. & Ktchell, J. F. Global change and freshwater ecosystems. Annu. Rev. Ecol. Syst. 23, 119–139 (1992).
El-Jabi, N., Caissie, D. & Turkkan, N. Water quality index assessment under climate change. J. Water Resour. Prot. 06, 533–542 (2014).
Madden, N., Lewis, A. & Davis, M. Thermal effluent from the power sector: an analysis of once-through cooling system impacts on surface water temperature. Environ. Res. Lett. 8, 035006 (2013).
Null, S. E., Ligare, S. T. & Viers, J. H. A method to consider whether dams mitigate climate change effects on stream temperatures. JAWRA J. Am. Water Resour. Assoc. 49, 1456–1472 (2013).
Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).
Sweeney, B. W., Jackson, J. K., Newbold, J. D. & Funk, D. H. Climate change and the life histories and biogeography of aquatic insects in Eastern North America. In Global Cilmate Change and Freshwater Ecosystems (eds Firth, P. & Fisher, S.) 143–176 (Springer, Berlin, 1990).
Hawkins, C. P., Norris, R. H., Hogue, J. N. & Feminella, J. W. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecol. Appl. 10, 1456–1477 (2000).
Hodkinson, I. D. & Jackson, J. K. Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ. Manag. 35, 649–666 (2005).
Bonada, N., Prat, N., Resh, V. H. & Statzner, B. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu. Rev. Entomol. 51, 495–523 (2006).
Atkinson, D. Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. J. Therm. Biol. 20, 61–74 (1995).
Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: three rules. Evol. Ecol. Res. 10, 251–268 (2008).
Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140 (2015).
Conley, J. M., Funk, D. H. & Buchwalter, D. B. Selenium bioaccumulation and maternal transfer in the mayfly Centroptilum triangulifer in a life-cycle, periphyton-biofilm trophic assay. Environ. Sci. Technol. 43, 7952–7957 (2009).
Conley, J. M., Funk, D. H., Cariello, N. J. & Buchwalter, D. B. Food rationing affects dietary selenium bioaccumulation and life cycle performance in the mayfly Centroptilum triangulifer. Ecotoxicology 20, 1840–1851 (2011).
Xie, L. T. et al. Cadmium biodynamics in the oligochaete Lumbriculus variegatus and its implications for trophic transfer. Aquat. Toxicol. 86, 265–271 (2008).
Xie, L. & Buchwalter, D. B. Cadmium exposure route affects antioxidant responses in the mayfly Centroptilum triangulifer. Aquat. Toxicol. 105, 199–205 (2011).
Kim, K. S., Funk, D. H. & Buchwalter, D. B. Dietary (periphyton) and aqueous Zn bioaccumulation dynamics in the mayfly Centroptilum triangulifer. Ecotoxicology 21, 2288–2296 (2012).
Wesner, J. S., Kraus, J. M., Schmidt, T. S., Walters, D. M. & Clements, W. H. Metamorphosis enhances the effects of metal exposure on the mayfly Centroptilum triangulifer. Environ. Sci. Technol. 48, 10415–10422 (2014).
Soucek, D. J. & Dickinson, A. Full-life chronic toxicity of sodium salts to the mayfly Neocloeon triangulifer in tests with laboratory cultured food. Environ. Toxicol. Chem. 34, 2126–2137 (2015).
Kunz, J. L. et al. Use of reconstituted waters to evaluate effects of elevated major ions associated with mountaintop coal mining on freshwater invertebrates. Environ. Toxicol. Chem. 32, 2826–2835 (2013).
Orr, S. E. & Buchwalter, D. B. It’s all about the fluxes: temperature influences ion transport and toxicity in aquatic insects. Aquat. Toxicol. 221, 105405 (2020).
Buchwalter, D., Scheibener, S., Chou, H., Soucek, D. & Elphick, J. Are sulfate effects in the mayfly Neocloeon triangulifer driven by the cost of ion regulation?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180013 (2018).
Jackson John, K. & Funk David, H. Temperature affects acute mayfly responses to elevated salinity: implications for toxicity of road de-icing salts. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180081 (2019).
Kim, K. S. et al. Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits. J. Exp. Biol. 220, 2598–2605 (2017).
Chou, H., Pathmasiri, W., Deese-Spruill, J., Sumner, S. & Buchwalter, D. B. Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits. J. Insect. Physiol. https://doi.org/10.1016/j.jinsphys.2017.07.008 (2017).
Chou, H. et al. The good, the bad, and the lethal: gene expression and metabolomics reveal physiological mechanisms underlying chronic thermal effects in mayfly larvae (Neocloeon triangulifer). Front. Ecol. Evol. 101, 107–112 (2018).
Funk, D. H., Jackson, J. K. & Sweeney, B. W. Taxonomy and genetics of the parthenogenetic mayfly Centroptilum triangulifer and its sexual sister Centroptilum alamance (Ephemeroptera: Baetidae). J. North Am. Benthol. Soc. 25, 417–429 (2006).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).
Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).
Ramani, A. K. et al. High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans. Genome Biol. 10, R101 (2009).
Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
Yassour, M. et al. Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proc. Natl. Acad. Sci. U. S. A. 106, 3264–3269 (2009).
Katz, B. & Minke, B. Drosophila photoreceptors and signaling mechanisms. Front. Cell. Neurosci. 3, 2 (2009).
Shen, W. L. et al. Function of rhodopsin in temperature discrimination in drosophila. Science 331, 1333–1336 (2011).
Wheeler, D. A., Hamblen-Coyle, M. J., Dushay, M. S. & Hall, J. C. Behavior in light–dark cycles of drosophila mutants that are arrhythmic, blind, or both. J. Biol. Rhythms https://doi.org/10.1177/074873049300800106 (2016).
Miyasako, Y., Umezaki, Y. & Tomioka, K. Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of drosophila circadian locomotor rhythms. J. Biol. Rhythms 22, 115–126 (2007).
Verberk, W. C. & Bilton, D. T. Oxygen-limited thermal tolerance is seen in a plastron-breathing insect and can be induced in a bimodal gas exchanger. J. Exp. Biol. 218, 2083–2088 (2015).
Verberk, W. C., Bilton, D. T., Calosi, P. & Spicer, J. I. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92, 1565–1572 (2011).
Verberk, W. C. E. P., Sommer, U., Davidson, R. L. & Viant, M. R. Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integr. Comp. Biol. 53, 609–619 (2013).
Merzendorfer, H. & Zimoch, L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 206, 4393–4412 (2003).
White, B. J. et al. Localization of candidate regions maintaining a common polymorphic inversion (2La) in Anopheles gambiae. PLoS Genet. preprint, e217 (2005).
Zhao, L., Wit, J., Svetec, N. & Begun, D. J. Parallel gene expression differences between low and high latitude populations of drosophila melanogaster and D. simulans. PLOS Genet. 11, e1005184 (2015).
Beament, J. W. L. The waterproofing mechanism of arthropods: I. The effect of temperature on cuticle permeability in terrestrial insects and ticks. J. Exp. Biol. 36, 391–422 (1959).
Dennis, A. B., Dunning, L. T., Sinclair, B. J. & Buckley, T. R. Parallel molecular routes to cold adaptation in eight genera of New Zealand stick insects. Sci. Rep. 5, 13965 (2015).
Camp, A. A., Funk, D. H. & Buchwalter, D. B. A sressful shortness of breath: molting disrupts breathing in the mayfly Cloeon dipterum. Freshw. Sci. 33, 695–699 (2014).
Butenandt, A. & Karlson, P. Über die Isolierung eines Metamorphose-Hormons der Insekten in kristallisierter Form. Z. Für Naturforschung B 9, 389–391 (1954).
Charles, J. P. The regulation of expression of insect cuticle protein genes. Insect. Biochem. Mol. Biol. 40, 205–213 (2010).
Rees, H. H. Zooecdysteroids: structure and occurrence. In Ecdysone: From Chemistry to Mode of Action (ed. Koolman, J.) (Thieme, Berlin, 1989).
Davenport, A. P. & Evans, P. D. Stress-induced changes in the octopamine levels of insect haemolymph. Insect. Biochem. 14, 135–143 (1984).
Source: Ecology - nature.com