in

Polyandry blocks gene drive in a wild house mouse population

  • 1.

    Burt, A. & Trivers, R. Genes in Conflict: The Biology of Selfish Genetic Elements (Belknap Press, Cambridge, 2006).

  • 2.

    Lindholm, A. K. et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol. Evolution 31, 316–326 (2016).

    Google Scholar 

  • 3.

    Champer, J., Kim, I. K., Champer, S. E., Clark, A. G. & Messer, P. W. Performance analysis of novel toxin-antidote CRISPR gene drive systems. BMC Biol. 18, 1–17 (2020).

    Google Scholar 

  • 4.

    Godwin, J. et al. Rodent gene drives for conservation: opportunities and data needs. Proc. R. Soc. B 286, 20191606 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Haig, D. & Bergstrom, C. Multiple mating, sperm competition and meiotic drive. J. Evol. Biol. 8, 265–282 (1995).

    Google Scholar 

  • 7.

    Manser, A., Lindholm, A. K., König, B. & Bagheri, H. C. Polyandry and the decrease of a selfish genetic element in a wild house mouse population. Evolution 65, 2435–2447 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Holman, L., Price, T. A., Wedell, N. & Kokko, H. Coevolutionary dynamics of polyandry and sex-linked meiotic drive. Evolution 69, 709–720 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Price, T. & Wedell, N. Selfish genetic elements and sexual selection: their impact on male fertility. Genetica 134, 99–111 (2008).

    PubMed  Google Scholar 

  • 10.

    Wedell, N. The dynamic relationship between polyandry and selfish genetic elements. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 368, 1–10 (2013).

    Google Scholar 

  • 11.

    Sutter, A. & Lindholm, A. K. Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice. Proc. R. Soc. B 282, 20150974 (2015).

    Google Scholar 

  • 12.

    Manser, A., Lindholm, A. K., Simmons, L. W. & Firman, R. C. Sperm competition suppresses gene drive among experimentally evolving populations of house mice. Mol. Ecol. 20, 5784–5792 (2017).

    Google Scholar 

  • 13.

    Price, T., Hodgson, D., Lewis, Z., Hurst, G. & Wedell, N. Selfish genetic elements promote polyandry in a fly. Science 332, 1241–1243 (2008).

    ADS  Google Scholar 

  • 14.

    Price, T. et al. Sex ratio distorter reduces sperm competitive ability in an insect. Evolution 62, 1644–1652 (2008).

    PubMed  Google Scholar 

  • 15.

    Herrmann, B. G. & Bauer, H. The Mouse t-haplotype: a Selfish Chromosome—Genetics, Molecular Mechanism, and Evolution, Vol. 3, 297–314 (Cambridge University Press, Cambridge, 2012).

  • 16.

    Lindholm, A. K., Musolf, K., Weidt, A. & König, B. Mate choice for genetic compatibility in the house mouse. Ecol. Evolution 3, 1231–1247 (2013).

    Google Scholar 

  • 17.

    Dean, M., Ardlie, K. & Nachman, M. The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus). Mol. Ecol. 15, 4141–4151 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Firman, R. & Simmons, L. Polyandry facilitates postcopulatory inbreeding avoidance in house mice. Evolution 62, 603–611 (2008).

    PubMed  Google Scholar 

  • 19.

    Thonhauser, K. E., Thoss, M., Musolf, K., Klaus, T. & Penn, D. J. Multiple paternity in wild house mice (Mus musculus musculus): effects on offspring genetic diversity and body mass. Ecol. Evolution 4, 200–209 (2013).

    Google Scholar 

  • 20.

    Auclair, Y., König, B. & Lindholm, A. K. Socially mediated polyandry: a new benefit of communal nesting in mammals. Behav. Ecol. 25, 1467–1473 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Rolland, C., Macdonald, D., de Fraipont, M. & Berdoy, M. Free female choice in house mice: leaving best for last. Behaviour 140, 1371–1388 (2003).

    Google Scholar 

  • 22.

    Thonhauser, K. E., Raveh, S., Hettyey, A., Beissmann, H. & Penn, D. J. Scent marking increases male reproductive success in wild house mice. Anim. Behav. 86, 1013–1021 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Thonhauser, K. E., Raveh, S. & Penn, D. J. Multiple paternity does not depend on male genetic diversity. Anim. Behav. 93, 135–141 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Bronson, F. The reproductive ecology of the house mouse. Q. Rev. Biol. 54, 265–299 (1979).

    CAS  PubMed  Google Scholar 

  • 25.

    Evans, J. P. & Simmons, L. W. The genetic basis of traits regulating sperm competition and polyandry: can selection favour the evolution of good-and sexy-sperm? Genetica 134, 5 (2008).

    PubMed  Google Scholar 

  • 26.

    McFarlane, E. S. et al. The heritability of multiple male mating in a promiscuous mammal. Biol. Lett. 7, 368–371 (2011).

    PubMed  Google Scholar 

  • 27.

    Reid, J. M., Arcese, P., Sardell, R. J. & Keller, L. F. Heritability of female extra-pair paternity rate in song sparrows (Melospiza melodia). Proc. R. Soc. B 278, 1114–1120 (2011).

    PubMed  Google Scholar 

  • 28.

    Sutter, A. & Lindholm, A. K. Meiotic drive changes sperm precedence patterns in house mice: potential for male alternative mating tactics? BMC Evolut. Biol. 16, 133 (2016).

    Google Scholar 

  • 29.

    Sutter, A. & Lindholm, A. K. The copulatory plug delays ejaculation by rival males and affects sperm competition outcome in house mice. J. Evol. Biol. 29, 1617–1630 (2016).

    CAS  PubMed  Google Scholar 

  • 30.

    Atlan, A., Joly, D., Capillon, C. & Montchamp-Moreau, C. Sex-ratio distorter of Drosophila simulans reduces male productivity and sperm competition ability. J. Evol. Biol. 17, 744 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Wilkinson, G., Johns, P., Kelleher, E., Muscedere, M. & Lorsong, A. Fitness effects of X chromosome drive in the stalk-eyed fly, Cyrtodiopsis dalmanni. J. Evol. Biol. 19, 1851–1860 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Angelard, C., Montchamp-Moreau, C. & Joly, D. Female-driven mechanisms, ejaculate size and quality contribute to the lower fertility of sex-ratio distorter males in Drosophila simulans. BMC Evol. Biol. 8, 1–12 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Dyer, K. A. & Hall, D. W. Fitness consequences of a non-recombining sex-ratio drive chromosome can explain its prevalence in the wild. Proc. R. Soc. B 286, 20192529 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Keais, G., Lu, S. & Perlman, S. Autosomal suppression and fitness costs of an old driving X chromosome in Drosophila testacea. J. Evol. Biol. 33, 619–628 (2020).

  • 35.

    Price, T. A., Lewis, Z., Smith, D. T., Hurst, G. D. & Wedell, N. Sex ratio drive promotes sexual conflict and sexual coevolution in the fly Drosophila pseudoobscura. Evolution 64, 1504–1509 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Runge, J.-N. & Lindholm, A. K. Carrying a selfish genetic element predicts increased migration propensity in free-living wild house mice. Proc. R. Soc. B 285, 20181333 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Meade, L., Finnegan, S., Kad, R., Fowler, K. & Pomiankowski, A. Adaptive maintenance of fertility in the face of meiotic drive. Am. Naturalist 195, 743–751 (2019).

    Google Scholar 

  • 38.

    Zeh, J. & Zeh, D. The evolution of polyandry II: post-copulatory defences against genetic incompatibility. Proc. R. Soc. B 264, 69–75 (1997).

    ADS  Google Scholar 

  • 39.

    Yasui, Y. A “good-sperm” model can explain the evolution of costly multiple mating by females. Am. Naturalist 149, 573–584 (1997).

    Google Scholar 

  • 40.

    Ferrari, M., Lindholm, A. K. & König, B. Fitness consequences of female alternative reproductive tactics in house mice (Mus musculus domesticus). Am. Naturalist 193, 106–124 (2019).

    Google Scholar 

  • 41.

    Ardlie, K. G. & Silver, L. M. Low frequency of t haplotypes in natural populations of house mice (Mus musculus domesticus). Evolution 52, 1185–1196 (1998).

    PubMed  Google Scholar 

  • 42.

    Ardlie, K. Putting the brake on drive: meiotic drive of t haplotype in natural populations of mice. Trends Genet. 14, 189–193 (1998).

    CAS  PubMed  Google Scholar 

  • 43.

    Young, S. A proposition on the population dynamics of the sterile t alleles in the house mouse. Evolution 21, 190–192 (1967).

    CAS  PubMed  Google Scholar 

  • 44.

    Petras, M. & Topping, J. The maintenance of polymorphisms at two loci in house mouse (Mus musculus) populations. Genome 25, 190–201 (1983).

    CAS  Google Scholar 

  • 45.

    Bull, J. Lethal gene drive selects inbreeding. Evolution 1, 1–16 (2017).

  • 46.

    van Boven, M. & Weissing, F. J. Segretation distortion in a deme-structured population: opposing demands of gene, individual and group selection. J. Evol. Biol. 12, 80–93 (1999).

    Google Scholar 

  • 47.

    Nunney, L. The role of deme size, reproductive patterns, and dispersal in the dynamics of t-lethal haplotypes. Evolution 47, 1342–1359 (1993).

    PubMed  Google Scholar 

  • 48.

    Lenington, S. The t complex: a story of genes, behavior, and populations. Adv. Study Behav. 20, 51–86 (1991).

    Google Scholar 

  • 49.

    Sutter, A. & Lindholm, A. K. No evidence for female discrimination against male house mice carrying a selfish genetic element. Curr. Zool. 62, zow063 (2016).

    Google Scholar 

  • 50.

    Manser, A., König, B. & Lindholm, A. Female house mice avoid fertilization by t haplotype incompatible males in a mate choice experiment. J. Evol. Biol. 28, 54–64 (2015).

    CAS  PubMed  Google Scholar 

  • 51.

    Manser, A., Lindholm, A. K. & Weissing, F. J. The evolution of costly mate choice against segregation distorters. Evolution 71, 2817–2828 (2017).

  • 52.

    Price, T., Verspoor, R. & Wedell, N. Ancient gene drives: an evolutionary paradox. Proc. R. Soc. B 286, 20192267 (2019).

    CAS  PubMed  Google Scholar 

  • 53.

    Galizi, R. et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat. Commun. 5, 3977 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Galizi, R. et al. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci. Rep. 6, 31139 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Piaggio, A. J. et al. Is it time for synthetic biodiversity conservation? Trends Ecol. Evolution 32, 97–107 (2017).

    Google Scholar 

  • 56.

    Leitschuh, C. M. et al. Developing gene drive technologies to eradicate invasive rodents from islands. J Responsible Innov. 5, S121–138 (2017).

  • 57.

    Manser, A. et al. Controlling invasive rodents via synthetic gene drive and the role of polyandry. Proc. R. Soc. B 286, 20190852 (2019).

    PubMed  Google Scholar 

  • 58.

    Howald, G. et al. Invasive rodent eradication on islands. Conserv. Biol. 21, 1258–1268 (2007).

    PubMed  Google Scholar 

  • 59.

    Prowse, T. A., Adikusuma, F., Cassey, P., Thomas, P. & Ross, J. V. A Y-chromosome shredding gene drive for controlling pest vertebrate populations. Elife 8, e41873 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    König, B. & Lindholm, A. The Complex Social Environment of Female House Mice (Mus domesticus), 114–134 (Cambridge University Press, Cambridge, 2012).

  • 61.

    Berry, R., Tattersall, F. & Hurst, J. Genus Mus (The Mammal Society Southampton, 2008).

  • 62.

    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).

    Google Scholar 

  • 63.

    Brambell, F. The influence of lactation on the implantation of the mammalian embryo. Am. J. Obstet. Gynecol. 33, 942–953 (1937).

    Google Scholar 

  • 64.

    Schimenti, J. & Hammer, M. Rapid identification of mouse t haplotype by PCR polymorphism (PCRP). Mouse Genome 108 (1990).

  • 65.

    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).

    PubMed  Google Scholar 

  • 66.

    Hadfield, J. D. et al. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  • 67.

    Bruck, D. Male segregation ratio advantage as a factor in maintaining lethal alleles in wild populations of house mice. Proc. Natl Acad. Sci. USA 43, 152–158 (1957).

    ADS  CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Transatlantic research and study partnership continues amid the pandemic

    Transcriptomic and life history responses of the mayfly Neocloeon triangulifer to chronic diel thermal challenge