Zheng, X. et al. Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature 495, 507–511 (2013).
Mayr, G. & Manegold, A. Can ovarian follicles fossilize?. Nature 499, E1 (2013).
O’Connor, J., Zheng, X. & Zhou, Z. Reply to “Can ovarian follicles fossilize?”. Nature 499, E1–E2 (2013).
Varricchio, D. J. & Jackson, F. D. Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode. Auk: Ornithol. Adv. 133, 654–684 (2016).
O’Connor, J. K., Wang, M., Zheng, X. T., Wang, X. L. & Zhou, Z. H. The histology of two female Early Cretaceous birds. Vertebrata PalAsiatica 52, 112–128 (2014).
O’Connor, J. K., Zheng, X., Wang, X., Wang, Y. & Zhou, Z. Ovarian follicles shed new light on dinosaur reproduction during the transition towards birds. Nat. Sci. Rev. 1, 15–17 (2013).
Wang, Y. et al. A new Jehol enantiornithine bird with three-dimensional preservation and ovarian follicles. J. Vertebr. Paleontol. 36, e1054496 (2016).
Zheng, X. et al. Exceptional preservation of soft tissue in a new specimen of Eoconfuciusornis and its biological implications. Natl. Sci. Rev. 4, 441–452 (2017).
Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).
O’Connor, J. & Zhou, Z. Early evolution of the biological bird: perspectives from new fossil discoveries in China. J. Ornithol. 156, 333–342 (2015).
Reisdorf, A. G. & Wuttke, M. Re-evaluating Moodie’s opisthotonic-posture hypothesis in fossil vertebrates part I: Reptiles—The taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen Archipelago (Jurassic, Germany). Palaeobiodiversity and Palaeoenvironments 92, 119–168 (2012).
Bailleul, A. M. et al. Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses. Commun. Biol. 3, 1–8 (2020).
Saitta, E. T. & Vinther, J. A perspective on the evidence for keratin protein preservation in fossils: An issue of replication versus validation. Palaeontologia Electronica 23.3.2E, 1–30 (2019).
Brasier, M., McLoughlin, N., Green, O. & Wacey, D. A fresh look at the fossil evidence for early Archaean cellular life. Philosophical Transactions of the Royal Society B: Biological Sciences 361, 887–902 (2006).
Saitta, E. T., Rogers, C. S., Brooker, R. A. & Vinther, J. Experimental taphonomy of keratin: A structural analysis of early taphonomic changes. Palaios 32, 647–657 (2017).
Saitta, E. T. et al. Preservation of feather fibers from the Late Cretaceous dinosaur Shuvuuia deserti raises concern about immunohistochemical analyses on fossils. Org. Geochem. 125, 142–151 (2018).
Schweitzer, M. H. et al. Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous Alvarezsaurid, Shuvuuia deserti. J. Exp. Zool. 285, 146–157 (1999).
O’Connor, W. N. & Valle, S. A combination Verhoeffs elastic and Masson’s trichrome stain for routine histology. Stain Technol. 57, 207–210 (1982).
Suvarna, K. S., Layton, C. & Bancroft, J. D. Bancroft’s Theory and Practice of Histological Techniques E-Book (Elsevier Health Sciences, Amsterdam, 2018).
Flint, M. H. & Lyons, M. F. The effect of heating and denaturation on the staining of collagen by the Masson trichrome procedure. Histochem. J. 7, 547–555 (1975).
Alers, J. C., Krijtenburg, P. J., Vissers, K. J. & van Dekken, H. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization: EDTA is highly preferable to a routinely used acid decalcifier. J. Histochem. Cytochem. 47, 703–709 (1999).
Standen, G. et al. Differentiation of German Tertiary brown coal lithotypes (‘amorphous’ and ‘woody’ kerogens) using ruthenium tetroxide oxidation and pyrolysis-gc-ms. Fuel 71, 31–36 (1992).
Stankiewicz, B. A. et al. Molecular taphonomy of arthropod and plant cuticles from the Carboniferous of North America: Implications for the origin of kerogen. J. Geol. Soc. 155, 453–462 (1998).
Grimes, S. T. et al. Understanding fossilization: Experimental pyritization of plants. Geology 29, 123–126 (2001).
Leng, Q. & Yang, H. Pyrite framboids associated with the Mesozoic Jehol Biota in northeastern China: Implications for microenvironment during early fossilization. Prog. Nat. Sci. 13, 206–212 (2003).
Zhou, Z. The Jehol Biota, an Early Cretaceous terrestrial Lagerstätte: New discoveries and implications. Natl. Sci. Rev. 1, 543–559 (2014).
Suk, D., Peacor, D. R. & Van der Voo, R. Replacement of pyrite framboids by magnetite in limestone and implications for palaeomagnetism. Nature 345, 611–613 (1990).
Wang, B. O., Zhao, F., Zhang, H., Fang, Y. & Zheng, D. Widespread pyritization of insects in the Early Cretaceous Jehol Biota. Palaios 27, 707–711 (2012).
Mccobb, L. M., Briggs, D. E., Evershed, R. P., Hall, A. R. & Hall, R. A. Preservation of fossil seeds from a 10th century AD cess pit at Coppergate, York. J. Archaeol. Sci. 28, 929–940 (2001).
Arena, D. A. Exceptional preservation of plants and invertebrates by phosphatization, Riversleigh, Australia. Palaios 23, 495–502 (2008).
Viney, M., Mustoe, G. E., Dillhoff, T. A. & Link, P. K. The Bruneau Woodpile: A miocene phosphatized fossil wood locality in Southwestern Idaho, USA. Geosciences 7, 82 (2017).
Sharma, R., Kumar, V. & Kumar, R. Distribution of phytoliths in plants: A review. Geol. Ecol. Landsc. 3, 123–148 (2019).
Orr, P. J., Briggs, D. E. & Kearns, S. L. Cambrian Burgess Shale animals replicated in clay minerals. Science 281, 1173–1175 (1998).
Butterfield, N. J., Balthasar, U. W. E. & Wilson, L. A. Fossil diagenesis in the Burgess Shale. Palaeontology 50, 537–543 (2007).
Page, A., Gabbott, S. E., Wilby, P. R. & Zalasiewicz, J. A. Ubiquitous Burgess Shale–style “clay templates” in low-grade metamorphic mudrocks. Geology 36, 855–858 (2008).
Schweitzer, M. H. et al. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 324, 626–631 (2009).
Saitta, E. T. et al. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. eLIFE 8, e46205 (2019).
McLoughlin, S. & Pott, C. Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants. Palaeogeogr. Palaeoclimatol. Palaeoecol. 515, 47–69 (2019).
Sun, G., Zheng, S., Dilcher, D., Wang, Y. & Mei, S. Early Angiosperms and their Associated Plants from Western Liaoning, China (Science and Technology Education Publishing House, Shanghai, 2001).
Zheng, X. et al. Fossil evidence of avian crops from the Early Cretaceous of China. Proc. Natl. Acad. Sci. 108, 15904–15907 (2011).
Kaye, T. G. et al. Laser-stimulated fluorescence in paleontology. PLoS ONE 10(5), e0125923 (2015).
Wang, X. L. et al. Basal paravian functional anatomy illuminated by high-detail body outline. Nat. Commun. 8, 14576 (2017).
Herrera, C. M. Seed dispersal by animals: A role in angiosperm diversification?. Am. Nat. 133, 309–322 (1989).
Leng, Q. & Friis, E. M. Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Systemat. Evol. 241, 77–88 (2003).
Wu, S. A preliminary study of the Jehol Flora from Western Liaoning. Palaeoworld 11, 7–57 (1999).
O’Connor, J. K. The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 178–195 (2019).
Mayr, G. Late Oligocene mousebird converges on parrots in skull morphology. Ibis 155, 384–396 (2013).
Zhou, Z. & Zhang, F. A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418, 405–409 (2002).
Briggs, D. E. & Williams, S. H. The restoration of flattened fossils. Lethaia 14, 157–164 (1981).
Farjon, A. A Handbook of the World’s Conifers 1 (Brill, Boston, 2010).
Mayr, G. Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance (Wiley-Blackwell, New York, 2017).
Miller, C. V. et al. Disassociated rhamphotheca of fossil bird Confuciusornis informs early beak reconstruction, stress regime, and developmental patterns. Commun. Biol. 3, 519 (2020).
Elzanowski, A., Peters, D. S. & Mayr, G. Cranial morphology of the Early Cretaceous bird Confuciusornis. J. Vertebr. Paleontol. 38, e1439832 (2018).
Fuster, F. & Traveset, A. Evidence for a double mutualistic interaction between a lizard and a Mediterranean gymnosperm Ephedra fragilis. . AoB Plants 1, 2. https://doi.org/10.1093/aobpla/plz001 (2019).
Rothwell, G. & Holt, B. Fossils and phenology in the evolution of Ginkgo biloba. In Ginkgo biloba, a global treasure (eds Hori, T. et al.) 223–230 (Springer, Berlin, 1997).
Valido, A. & Olesen, J. M. The importance of lizards as frugivores and seed dispersers. In Seed Dispersal: Theory and Its Application in a Changing World (eds Dennis, A. J. et al.) 124–147 (CAB International, Wallingford, 2007).
Zhou, S., Zhou, Z. & O’Connor, J. K. Anatomy of the basal ornithuromorph bird Archaeorhynchus spathula from the Early Cretaceous of Liaoning, China. J. Vertebr. Paleontol. 33, 141–152 (2013).
O’Connor, J. K. & Zhou, Z. The evolution of the modern avian digestive system: Insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology 84, 13–27 (2020).
O’Connor, J. et al. First report of gastroliths in the Early Cretaceous basal bird Jeholornis. Cretac. Res. 84, 200–208 (2018).
Zhou, Z. & Zhang, F. Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can. J. Earth Sci. 40, 731–747 (2003).
Gionfriddo, J. P. & Best, L. B. Grit use by birds. Curr. Ornithol. 19, 89–148 (1999).
Chiappe, L. M. & Meng, Q. Birds of Stone: Chinese Avian Fossils from the Age of Dinosaurs (Johns Hopkins University Press, Baltimore, 2016).
Source: Ecology - nature.com