in

Omics approaches for conservation biology research on the bivalve Chamelea gallina

  • 1.

    Ghiselli, F. et al. Comparative transcriptomics in two bivalve species offers different perspectives on the evolution of sex-biased genes. Genome Biol. Evol. 10, 1389–1402. https://doi.org/10.1093/gbe/evy082 (2018).

    Article  Google Scholar 

  • 2.

    Connon, R. E., Jeffries, K. M., Komoroske, L. M., Todgham, A. E. & Fangue, N. A. The utility of transcriptomics in fish conservation. J. Exp. Biol. 221, jeb148833 (2018).

    Article  Google Scholar 

  • 3.

    Gaspar, M. B. & Monteiro, C. C. Reproductive cycles of the razor clam Ensis siliqua and the clam Venus striatula off Vilamoura Southern Portugal. J. Mar. Biol. Assoc. U.K. 78, 1247–1258 (1998).

    Article  Google Scholar 

  • 4.

    Poppe, G. T. & Goto, Y. European Seashells. Vol II (Scaphopoda, Bivalvia, Cephalopoda) 1–221 (Verlag Christa Hemmen, Germany, 1993).

    Google Scholar 

  • 5.

    Orban, E. et al. Nutritional and commercial quality of the striped venus clam, Chamelea gallina, from the Adriatic sea. Food Chem. 101, 1063–1070 (2007).

    CAS  Article  Google Scholar 

  • 6.

    Casali, C. Résumé des paramètres biologiques sur Venus gallina L. en Adriatique (Synopsis of biological data on Venus gallina L. in the Adriatic Sea). FAO Fish. Rep. 290, 171–173 (1984).

    Google Scholar 

  • 7.

    Froglia, C. Aspetti biologici, tecnologici e statistici della pesca delle vongole (Venus gallina) (Biological, technological and statistical observations on the fishery targeting common clams, Venus gallina). Incontri Tecnici, Laboratorio di Tecnologia della Pesca, Consiglio Nazionale delle Ricerche. 9, 7–22 (1975).

    Google Scholar 

  • 8.

    Keller, N., Del Piero, D. & Longinelli, A. Isotopic composition, growth rates and biological behaviour of Chamelea gallina and Callista chione in the Gulf of Trieste. Mar. Biol. 140, 9–15 (2002).

    Article  Google Scholar 

  • 9.

    Valli, G., Zardini, D. & Nodari, P. Cycle reproductif et biométrie chez Chamelea gallina (L.) (Mollusca, Bivalvia) dans le Golfe de Trieste (Reproductive cycle and biometry of the Chamelea gallina stock in the Gulf of Trieste). Rapp. Comm. Int. Mer Méditerr. 29, 339–340 (1985).

    Google Scholar 

  • 10.

    Dalgiç, G., Okumuş, I. & Karayücel, S. The effect of fishing on growth of the clam Chamelea gallina (Bivalvia: Veneridae) for the Turkish Black Sea coast. J. Mar. Biol. Assoc. UK 90, 261–265 (2009).

    Article  Google Scholar 

  • 11.

    Delgado, M., Silva, L. & Juárez, A. Aspects of reproduction of striped venus Chamelea gallina in the Gulf of Cádiz (SW Spain): implications for fishery management. Fish. Res. 146, 86–95 (2013).

    Article  Google Scholar 

  • 12.

    Romanelli, M., Cordisco, C. A. & Giovanardi, O. The long-term decline of the Chamelea gallina L. (Bivalvia: Veneridae) clam fishery in the Adriatic Sea: is a synthesis possible?. Acta Adriat. 50, 171–205 (2009).

    Google Scholar 

  • 13.

    Ministerial decree n.27 del 17/6/(2019), Ministry of Agricultural Food, forestry, and Tourism policies. Adozione del Piano di gestione nazionale per le attivita’ di pesca con il sistema draghe idrauliche e rastrelli da natante così come identificati nella denominazione degli attrezzi di pesca in draghe meccaniche comprese le turbosoffianti (HMD) e draga meccanizzata (DRB). (2019), Gazzetta ufficiale Italiana.

  • 14.

    Vaughn, C. C. & Hoellein, T. J. Bivalve impacts in freshwater and marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 49, 183–208 (2018).

    Article  Google Scholar 

  • 15.

    Fitzer, S. C., Phoenix, V. R., Cusack, M. & Kamenos, N. A. Ocean acidification impacts mussel control on biomineralisation. Sci. Rep. 4, 6218 (2014).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Li, Q., Zhao, X., Khong, L. & Yu, H. Transcriptomic response to stress in marine bivalves. Invert. Surviv. J. 10, 84–93 (2013).

    CAS  Google Scholar 

  • 17.

    Luchmann, K. H. et al. Biochemical biomarkers and hydrocarbons concentrations in the mangrove oyster Crassostrea brasiliana following exposure to diesel fuel water-accommodated fraction. Aquat. Toxicol. 105, 652–660 (2011).

    Article  CAS  Google Scholar 

  • 18.

    Philipp, E. E. et al. Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis. PLoS ONE 7, e33091 (2012).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Ezgeta-Balic, D. et al. An energy budget for the subtidal bivalve Modiolus barbatus (Mollusca) at different temperatures. Mar. Environ. Res. 71, 79–85 (2011).

    CAS  Article  Google Scholar 

  • 20.

    Ivanina, A. V., Kurochkin, I. O., Leamy, L. & Sokolova, I. M. Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation. J. Exp. Biol. 215, 3142–3154 (2012).

    CAS  Article  Google Scholar 

  • 21.

    Matozzo, V. et al. First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PLoS ONE 7(3), e33820. https://doi.org/10.1371/journal.pone.0033820 (2012).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Monari, M., Foschi, J., Rosmini, R., Marin, M. G. & Serrazanetti, G. P. Heat shock protein 70 response to physical and chemical stress in Chamelea gallina. J. Exp. Mar. Biol. Ecol. 397, 71–78 (2011).

    CAS  Article  Google Scholar 

  • 23.

    Sobral, P. & Widdows, J. Influence of hypoxia and anoxia on the physiological response of the clam Ruditapes decussatus from southern Portugal. Mar. Biol. 127, 455–461 (1997).

    Article  Google Scholar 

  • 24.

    Visciano, P. et al. Concentrations of contaminants with regulatory limits in samples of clam (Chamelea gallina) collected along the Abruzzi Region Coast in Central Italy. J. Food Prot. 78, 1719–1728 (2015).

    CAS  Article  Google Scholar 

  • 25.

    Moschino, V., Deppieri, M. & Marin, M. G. Evaluation of shell damage to the clam Chamelea gallina captured by hydraulic dredging in the Northern Adriatic Sea. ICES J. Mar. Sci. 60(2), 393–401 (2003).

    Article  Google Scholar 

  • 26.

    Milan, M. et al. Transcriptomic profiling of Chamelea gallina from sites along the Abruzzo coast (Italy), subject to periodic localized mortality events. Mar. Biol. 163, 163–169 (2016).

    Article  Google Scholar 

  • 27.

    Milan, M. et al. Host-microbiota interactions shed light on mortality events in the striped venus clam Chamelea gallina. Mol. Ecol. 28, 4486–4499 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Coppe, A. et al. Sequencing and characterization of striped venus transcriptome expand resources for clam fishery genetics. PLoS ONE 7(9), e44185 (2012).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Papetti, C. et al. Genetic variability of the striped venus Chamelea gallina in the northern Adriatic Sea. Fish. Res. 201, 68–78 (2018).

    Article  Google Scholar 

  • 30.

    Eizaguirre, C. & Baltazar-Soares, M. Evolutionary conservation-evaluating the adaptive potential of species. Evol. Appl. 7, 963–967 (2014).

    Article  Google Scholar 

  • 31.

    Mable, B. K. Conservation of adaptive potential and functional diversity: integrating old and new approaches. Conserv. Genet. 20, 89–100 (2019).

    CAS  Article  Google Scholar 

  • 32.

    He, X., Johansson, M. L. & Heath, D. D. Role of genomics and transcriptomics in selection of reintroduction source populations. Conserv. Biol. 30, 1010–1018 (2016).

    Article  Google Scholar 

  • 33.

    Bertucci, A. et al. Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River France. Environ. Sci. Pollut. R. 24, 27145–27159 (2017).

    CAS  Article  Google Scholar 

  • 34.

    Gonzalez, P. & Pierron, F. Omics in aquatic ecotoxicology: the ultimate response to biological questions? In aquatic ecotoxicology (eds Amiard, J. C. et al.) 183–203 (Academic Press, Cambridge, 2015). https://doi.org/10.1016/B978-0-12-800949-9.00008-5.

    Google Scholar 

  • 35.

    Milan, M. et al. Ecotoxicological effects of the herbicide glyphosate in non-target aquatic species: transcriptional responses in the mussel Mytilus galloprovincialis. Environ. Pollut. 237, 442–451 (2018).

    CAS  Article  Google Scholar 

  • 36.

    Vendrami, D. L. J. et al. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. R. Soc. Open Sci. 4, 160548 (2017).

    ADS  Article  Google Scholar 

  • 37.

    Vendrami, D. L. J. et al. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci. Rep. 9, 7455 (2019).

    ADS  Article  CAS  Google Scholar 

  • 38.

    Joaquim, S. et al. Biochemical and energy dynamics throughout the reproductive cycle of the striped venus Chamelea gallina (Mollusca, Bivalvia). Invertebr. Reprod. Dev. 58, 284–293 (2014).

    CAS  Article  Google Scholar 

  • 39.

    Hamdani, A. & Soltani-Mazouni, N. Changes in biochemical composition of the gonads of Donax trunculus L. (Mollusca, Bivalvia) from the Gulf of Annaba (Algeria) in relation to reproductive events and pollution. Jordan J. Biol. Sci. 4, 149–156 (2011).

    Google Scholar 

  • 40.

    Mancuso, A. et al. Environmental influence on calcification of the bivalve Chamelea gallina along a latitudinal gradient in the Adriatic Sea. Sci. Rep. 9, 11198 (2019).

    ADS  Article  CAS  Google Scholar 

  • 41.

    Artegiani, A. et al. The Adriatic Sea general circulation. Part II: baroclinic circulation structure. J. Phys. Oceanogr. 27, 1515–1532 (1997).

    ADS  Article  Google Scholar 

  • 42.

    Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemometr. Intell. Lab. 2, 37–52 (1987).

    CAS  Article  Google Scholar 

  • 43.

    Bianchi, C. N. & Morri, C. Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar. Pollut. Bull. 40, 367–376 (2000).

    CAS  Article  Google Scholar 

  • 44.

    Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer 6, 369–381 (2006).

    CAS  Article  Google Scholar 

  • 45.

    Mackintosh, C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J. 15, 329–342 (2004).

    Article  Google Scholar 

  • 46.

    Gardino, A. K. & Yaffe, M. B. 14-3-3 Proteins as signaling integration points for cell cycle control and apoptosis. Semin. Cell. Dev. Biol. 22, 688–695 (2012).

    Article  CAS  Google Scholar 

  • 47.

    Telles, E., Hosing, A. S., Kundu, S. T., Venkatraman, P. & Dalal, S. N. A novel pocket in 14-3-3epsilon is required to mediate specific complex formation with cdc25C and to inhibit cell cycle progression upon activation of checkpoint pathways. Exp. Cell. Res. 315, 1448–1457 (2009).

    CAS  Article  Google Scholar 

  • 48.

    Llera-Herrera, R., Garcıa-Gasca, A., Abreu-Goodger, C., Huvet, A. & Ibarra, A. M. Identification of male gametogenesis expressed genes from the scallop Nodipecten subnodosus by suppressive subtraction hybridization and pyrosequencing. PLoS ONE 8(9), e73176 (2013).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Lucas, A. & Beninger, P. G. The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 44, 187–200 (1985).

    Article  Google Scholar 

  • 50.

    Artigaud, S. et al. Deciphering the molecular adaptation of the king scallop (Pecten maximus) to heat stress using transcriptomics and proteomics. BMC Genom. 16, 988 (2015).

    Article  CAS  Google Scholar 

  • 51.

    Clark, M. S. et al. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster Crassostrea gigas. Ecol. Evol. 3, 3283–3297 (2013).

    Google Scholar 

  • 52.

    Lockwood, B. L., Sanders, J. G. & Somero, G. N. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J. Exp. Biol. 213, 3548–3558 (2010).

    CAS  Article  Google Scholar 

  • 53.

    Darriba, S., San Juan, F. & Guerra, A. Energy storage and utilization in relation to the reproductive cycle in the razor clam. ICES J. Mar. Sci. 62, 886–896 (2005).

    Article  Google Scholar 

  • 54.

    Mathieu, M. & Lubet, P. Storage tissue metabolism and reproduction in marine bivalves: a brief review. Invertebr. Reprod. Dev. 23, 123–129 (1993).

    CAS  Article  Google Scholar 

  • 55.

    Usero, J., Morillo, J. & El Bakouri, H. A general integrated ecotoxicological method for marine sediment quality assessment: application to sediments from littoral ecosystems on Southern Spain’s Atlantic coast. Mar. Pollut. Bull. 56, 2027–2036 (2008).

    CAS  Article  Google Scholar 

  • 56.

    Bocchetti, R. & Regoli, F. Seasonal variability of oxidative biomarkers, lysosomal parameters, metallothioneins and peroxisomal enzymes in the Mediterranean mussel Mytilus galloprovincialis from Adriatic Sea. Chemosphere 65, 913–921 (2006).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Nahrgang, J. et al. Seasonal variation in biomarkers in blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua)-Implications for environmental monitoring in the Barents Sea. Aquat. Toxicol. 127, 21–35 (2013).

    CAS  Article  Google Scholar 

  • 58.

    Sardi, A. E., Renaud, P. E., da Cunha Lanna, P. & Camus, L. Baseline levels of oxidative stress biomarkers in species from a subtropical estuarine system (Paranaguá Bay, southern Brazil). Mar. Pollut. Bull. 113, 496–508 (2016).

    CAS  Article  Google Scholar 

  • 59.

    Gorbi, S., Baldini, C. & Regoli, F. Seasonal variability of metallothioneins, cytochrome P450, bile metabolites and oxyradical metabolism in the European eel Anguilla anguilla L. (Anguillidae) and striped mullet Mugil cephalus L. (Mugilidae). Arch. Environ. Con. Tox. 49, 62–70 (2005).

    CAS  Article  Google Scholar 

  • 60.

    Gorbi, S. et al. An ecotoxicological protocol with caged mussels, Mytilus galloprovincialis, for monitoring the impact of an offshore platform in the Adriatic Sea. Mar. Environ. Res. 65, 34–49 (2008).

    CAS  Article  Google Scholar 

  • 61.

    Fernández, R., Lemer, S., McIntyre, E. & Giribet, G. Comparative phylogeography and population genetic structure of three widespread mollusc species in the Mediterranean and near Atlantic. Mar. Ecol. 36, 701–715 (2015).

    ADS  Article  Google Scholar 

  • 62.

    Lourenço, C. R. et al. Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine mussel. Sci. Rep. 7, 10279 (2017).

    ADS  Article  CAS  Google Scholar 

  • 63.

    Villamor, A., Costantini, F. & Abbiati, M. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates. PLoS ONE 9, e101135 (2014).

    ADS  Article  CAS  Google Scholar 

  • 64.

    Garoia, F. et al. Microsatellite DNA variation reveals high gene flow and panmictic populations in the Adriatic shared stocks of the European squid and cuttlefish (Cephalopoda). Heredity 93, 166–174 (2004).

    CAS  Article  Google Scholar 

  • 65.

    Marie, A. D. et al. Implications for management and conservation of the population genetic structure of the wedge clam Donax trunculus across two biogeographic boundaries. Sci. Rep. 6, 39152 (2016).

    ADS  CAS  Article  Google Scholar 

  • 66.

    De Luca, D., Catanese, G., Procaccini, G. & Fiorito, G. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: genetic diversity and population structure. PLoS ONE 11(2), e0149496 (2016).

    Article  CAS  Google Scholar 

  • 67.

    Melis, R. et al. Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia 807, 277–296 (2018).

    CAS  Article  Google Scholar 

  • 68.

    Bahri-Sfar, L., Lemaire, C., Hassine, O. K. B. & Bonhomme, F. Fragmentation of sea bass populations in the Western and Eastern Mediterranean as revealed by microsatellite polymorphism. Proc. R. Soc. Lond. 267, 929–935 (2000).

    CAS  Article  Google Scholar 

  • 69.

    Maggio, T., Lo Brutto, S., Garoia, F., Tinti, F. & Arculeo, M. Microsatellite analysis of red mullet Mullus barbatus (Perciformes, Mullidae) reveals the isolation of the Adriatic Basin in the Mediterranean Sea. ICES J. Mar. Sci. 66, 1883–1891 (2009).

    Article  Google Scholar 

  • 70.

    Schunter, C. et al. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167–5181 (2011).

    CAS  Article  Google Scholar 

  • 71.

    Aguirre, J. D. & Marshall, D. J. Genetic diversity increases population productivity in a sessile marine invertebrate. Ecology 93, 1134–1142 (2012).

    Article  Google Scholar 

  • 72.

    Gamfeldt, L. & Källström, B. Increasing intraspecific diversity increases predictability in population survival in the face of perturbations. Oikos 116, 700–705 (2007).

    Article  Google Scholar 

  • 73.

    Lloyd, M. M., Makukhov, A. D. & Pespeni, M. H. Loss of genetic diversity as a consequence of selection in response to high pCO2. Evol. Appl. 9, 1124–1132 (2016).

    CAS  Article  Google Scholar 

  • 74.

    Griffiths, S. M., Taylor-Cox, E. D., Behringer, D. C., Butler, M. J. IV. & Preziosi, R. F. Using genetics to inform restoration and predict resilience in declining populations of a keystone marine sponge. Biodivers. Conserv. 29, 1383–1410 (2020).

    Article  Google Scholar 

  • 75.

    Plough, L. V. Genetic load in marine animals: a review. Curr. Zool. 62, 567–579 (2016).

    Article  Google Scholar 

  • 76.

    Biondi, S. & Del Piero, D. Survey on Chamelea gallina beds in the Lignano area (Gulf of Trieste, Adriatic Sea). Ann. Istrian Mediterr. Stud. 22, 1–8 (2012).

    Google Scholar 

  • 77.

    Nojima, S. & Russo, G. F. Struttura della popolazione del bivalve Chamelea gallina(L.) in un fondo sabbioso dell’isola di Ischia (Golfo di Napoli) (Population structure of Chamelea gallinain infralittoral sand off Ischia Island, Gulf of Naples). Oebalia 15, 189–201 (1989).

    Google Scholar 

  • 78.

    Artegiani, A. et al. The Adriatic Sea general circulation. Part I: air-sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).

    ADS  Article  Google Scholar 

  • 79.

    El Ayari, T., El Menif, N. T., Hamer, B., Cahill, A. E. & Bierne, N. The hidden side of a major marine biogeographic boundary: a wide mosaic hybrid zone at the Atlantic-Mediterranean divide reveals the complex interaction between natural and genetic barriers in mussels. Heredity 122, 70–784 (2019).

    Article  Google Scholar 

  • 80.

    Keen, A. M. Veneridae. In Treatise of Invertebrate Paleontology (ed. Moore, R. C.) N671–N688 (Geological Society of America University of Kansas Press Lawrence, Boulder, 1969).

    Google Scholar 

  • 81.

    Bellan-Santini, D., Fredj, G. & Bellan, G. Mise au point sur les connaissance concernant le benthos profond Mediterraneen. Oebalia 17, 21–36 (1992).

    Google Scholar 

  • 82.

    Bouchet, P. & Taviani, M. The Mediterranean deep-sea fauna: pseudopopulations of Atlantic species?. Deep-Sea Res. 39, 169–184 (1992).

    ADS  Article  Google Scholar 

  • 83.

    Myers, A. A. Species and generic gamma-scale diversity in shallow-water marine Amphipoda with particular reference to the Mediterranean. J. Mar. Biol. Assoc. UK 76, 195–202 (1996).

    Article  Google Scholar 

  • 84.

    Stanley, D. J. & Wezel, F.-C. Geological Evolution of the Mediterranean Basin (Springer, New York, 1985).

    Google Scholar 

  • 85.

    Walne, P. R. Factors affecting the relation between feeding and growth in bivalves. In Harvesting Polluted Waters Vol. 8 (ed. Devil, O.) 169–176 (Plenum Press, New York, 1976).

    Google Scholar 

  • 86.

    Del Fabbro, C., Scalabrin, S., Morgante, M. & Giorgi, F. M. An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS ONE 8(12), e85024 (2013).

    ADS  Article  CAS  Google Scholar 

  • 87.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article  Google Scholar 

  • 88.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  Article  Google Scholar 

  • 89.

    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS  Article  Google Scholar 

  • 90.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Article  Google Scholar 

  • 91.

    Love, M., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  CAS  Google Scholar 

  • 92.

    Punta, M. et al. The Pfam protein families database. Nucleic Acid Res. 40, 290–301 (2012).

    Article  CAS  Google Scholar 

  • 93.

    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  Article  Google Scholar 

  • 94.

    Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590-595 (2019).

    CAS  Article  Google Scholar 

  • 95.

    Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).

    CAS  Article  Google Scholar 

  • 96.

    Bocchetti, R. et al. Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas. Aquat. Toxicol. 89, 257–266 (2008).

    CAS  Article  Google Scholar 

  • 97.

    Bocchetti, R. et al. Seasonal variations of exposure biomarkers, oxidative stress responses and cell damage in the clams, Tapes philippinarum, and mussels, Mytilus galloprovincialis, from Adriatic Sea. Mar. Environ. R. 66, 24–26 (2008).

    CAS  Article  Google Scholar 

  • 98.

    Viarengo, A., Ponzano, E., Dondero, F. & Fabbri, R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar. Environ. Res. 44, 69–84 (1997).

    CAS  Article  Google Scholar 

  • 99.

    Fattorini, D. et al. Seasonal, spatial and inter-annual variations of trace metals in mussels from the Adriatic Sea: a regional gradient for arsenic and implications for monitoring the impact of off-shore activities. Chemosphere 72, 1524–1533 (2008).

    ADS  CAS  Article  Google Scholar 

  • 100.

    Clementi, E. et al. Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents, EAS5 system). Copernicus Monitoring Environment Marine Service (CMEMS) (2019). https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_PHY_006_013_EAS5.

  • 101.

    Bolzon, G. et al. Mediterranean Sea Biogeochemical Analysis and Forecast (CMEMS MED-Biogeochemistry (2018)-Present). Copernicus Monitoring Environment Marine Service (CMEMS) (2020). https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_BIO_006_014_MEDBFM3.

  • 102.

    Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5), e37135 (2012).

    ADS  CAS  Article  Google Scholar 

  • 103.

    Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).

    CAS  Article  Google Scholar 

  • 104.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  CAS  Google Scholar 

  • 105.

    Huson, D. H. et al. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12(6), e1004957 (2016).

    Article  CAS  Google Scholar 

  • 106.

    Malinsky, M., Trucchi, E., Lawson, D. J. & Falush, D. RADpainter and fineRADstructure: population inference from RADseq data. Mol. Biol. Evol. 35, 1284–1290 (2018).

    CAS  Article  Google Scholar 

  • 107.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  Article  Google Scholar 

  • 108.

    Liu, X. & Fu, Y.-X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555–559. https://doi.org/10.1038/ng.3254 (2015).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding

    Increased mosquito abundance and species richness in Connecticut, United States 2001–2019