in

Spatial patterns of pathogen prevalence in questing Ixodes ricinus nymphs in southern Scandinavia, 2016

  • 1.

    Pfäffle, M., Littwin, N., Muders, S. V. & Petney, T. N. The ecology of tick-borne diseases. Int. J. Parasitol. 43, 1059–1077 (2013).

    Article  Google Scholar 

  • 2.

    Han, B. A. & Yang, L. Predicting novel tick vectors of zoonotic disease. in ICML Workshop on #Data4Good: Machine Learning in Social Good Applications 71–75 (2016).

  • 3.

    de la Fuente, J., Estrada-Pena, A., Venzal, J. M., Kocan, K. M. & Sonenshine, D. E. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938–6946 (2008).

    Article  Google Scholar 

  • 4.

    Michelet, L. et al. High-throughput screening of tick-borne pathogens in Europe. Front. Cell. Infect. Microbiol. 4, 103 (2014).

    Article  Google Scholar 

  • 5.

    Estrada-Peña, A. & de la Fuente, J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Res. 108, 104–128 (2014).

    Article  CAS  Google Scholar 

  • 6.

    Paul, R. E. L. et al. Environmental factors influencing tick densities over seven years in a French suburban forest. Parasit. Vectors 9, 309 (2016).

    Article  CAS  Google Scholar 

  • 7.

    Randolph, S. E. Tick-borne disease systems emerge from the shadows: the beauty lies in molecular detail, the message in epidemiology. Parasitology 136, 1403 (2009).

    CAS  Article  Google Scholar 

  • 8.

    Jore, S. et al. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit. Vectors 4, 1–11 (2011).

    Article  Google Scholar 

  • 9.

    Bernstein, L. et al. Climate Change 2007: Synthesis Report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)] https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_full_report.pdf (2007).

  • 10.

    Kovats, R. S., Campbell-Lendrum, D. H., McMichael, A. J., Woodward, A. & Cox, J. S. Early effects of climate change: do they include changes in vector-borne disease?. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1057–1068 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Climate and vectorborne diseases. Am. J. Prev. Med. 35, 436–450 (2008).

    Article  Google Scholar 

  • 12.

    Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit. Vectors 6, 1–11 (2013).

    Article  Google Scholar 

  • 13.

    Andreassen, A. et al. Prevalence of tick borne encephalitis virus in tick nymphs in relation to climatic factors on the southern coast of Norway. Parasit. Vectors 5, 1–12 (2012).

    Article  Google Scholar 

  • 14.

    Soleng, A. et al. Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway. Ticks Tick. Borne. Dis. 9, 97–103 (2018).

    CAS  Article  Google Scholar 

  • 15.

    Kjelland, V. et al. Tick-borne encephalitis virus, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks collected from recreational islands in southern Norway. Ticks Tick. Borne. Dis. 9, 1098–1102 (2018).

    Article  Google Scholar 

  • 16.

    Paulsen, K. M. et al. Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks from three islands in north-western Norway. APMIS 123, 759–764 (2015).

    Article  Google Scholar 

  • 17.

    Kjær, L. J. et al. A large-scale screening for the taiga tick, Ixodes persulcatus, and the meadow tick, Dermacentor reticulatus, in southern Scandinavia, 2016. Parasit. Vectors 12, 338 (2019).

    Article  Google Scholar 

  • 18.

    Oechslin, C. P. et al. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland. Parasit. Vectors 10, 558 (2017).

    Article  CAS  Google Scholar 

  • 19.

    Becker, N. S. et al. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex. BMC Genom. 17, 734 (2016).

    Article  CAS  Google Scholar 

  • 20.

    Bowman, A. S. & Nuttall, P. A. Ticks: Biology, Disease and Control (Cambridge University Press, Cambridge, 2004).

    Google Scholar 

  • 21.

    Hasle, G. et al. Transport of ticks by migratory passerine birds to Norway. J. Parasitol. 95, 1342–1351 (2009).

    PubMed  Google Scholar 

  • 22.

    Klitgaard, K. et al. Screening for multiple tick-borne pathogens in Ixodes ricinus ticks from birds in Denmark during spring and autumn migration seasons. Ticks Tick. Borne. Dis. 10, 546–552 (2019).

    PubMed  Google Scholar 

  • 23.

    Skarphédinsson, S. et al. Detection and identification of Anaplasma phagocytophilum, Borrelia burgdorferi, and Rickettsia helvetica in Danish Ixodes ricinus ticks. APMIS 115, 225–230 (2007).

    PubMed  Google Scholar 

  • 24.

    Fraenkel, C.-J., Garpmo, U. & Berglund, J. Determination of novel Borrelia genospecies in Swedish Ixodes ricinus ticks. J. Clin. Microbiol. 40, 3308–3312 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Wilhelmsson, P. et al. Prevalence, diversity, and load of Borrelia species in ticks that have fed on humans in regions of Sweden and Åland Islands, Finland with different Lyme borreliosis incidences. PLoS ONE 8, e81433 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Vennestrøm, J., Egholm, H. & Jensen, P. M. Occurrence of multiple infections with different Borrelia burgdorferi genospecies in Danish Ixodes ricinus nymphs. Parasitol. Int. 57, 32–37 (2008).

    PubMed  Google Scholar 

  • 27.

    Kjelland, V., Stuen, S., Skarpaas, T. & Slettan, A. Prevalence and genotypes of Borrelia burgdorferi sensu lato infection in Ixodes ricinus ticks in southern Norway. Scand. J. Infect. Dis. 42, 579–585 (2010).

    CAS  PubMed  Google Scholar 

  • 28.

    Klitgaard, K., Kjær, L. J., Isbrand, A., Hansen, M. F. & Bødker, R. Multiple infections in questing nymphs and adult female Ixodes ricinus ticks collected in a recreational forest in Denmark. Ticks Tick. Borne. Dis. 10, 1060–1065 (2019).

    PubMed  Google Scholar 

  • 29.

    Maraspin, V., Ruzic-Sabljic, E. & Strle, F. Lyme borreliosis and Borrelia spielmanii. Emerg. Infect. Dis. 12, 1177–1177 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Rudenko, N., Golovchenko, M., Grubhoffer, L. & Oliver, J. H. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick. Borne. Dis. 2, 123–128 (2011).

    Article  Google Scholar 

  • 31.

    Fertner, M. E., Mølbak, L., Pihl, T. P. B., Fomsgaard, A. & Bødker, R. First detection of tick-borne “Candidatus Neoehrlichia mikurensis” in Denmark 2011. Eurosurveillance 17, 20096 (2012).

    Google Scholar 

  • 32.

    Quarsten, H. et al. Candidatus Neoehrlichia mikurensis and Borrelia burgdorferi sensu lato detected in the blood of Norwegian patients with erythema migrans. Ticks Tick. Borne. Dis. 8, 715–720 (2017).

    CAS  Article  Google Scholar 

  • 33.

    Stuen, S., Granquist, E. G. & Silaghi, C. Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 3, 31 (2013).

    Article  CAS  Google Scholar 

  • 34.

    Fomsgaard, A. et al. Tick-borne encephalitis virus, Zealand, Denmark, 2011. Emerg. Infect. Dis. 19, 1171–1173 (2013).

    Article  Google Scholar 

  • 35.

    Jensen, P. M. et al. Transmission differentials for multiple pathogens as inferred from their prevalence in larva, nymph and adult of Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 71, 171–182 (2017).

    Article  Google Scholar 

  • 36.

    Lundkvist, Å., Wallensten, A., Vene, S. & Hjertqvist, M. Tick-borne encephalitis increasing in Sweden, 2011. Eurosurveillance 16, 19981 (2011).

    Article  Google Scholar 

  • 37.

    Svensson, J., Hunfeld, K.-P. & Persson, K. E. M. High seroprevalence of Babesia antibodies among Borrelia burgdorferi-infected humans in Sweden. Ticks Tick. Borne. Dis. 10, 186–190 (2019).

    Article  Google Scholar 

  • 38.

    Mørch, K., Holmaas, G., Frolander, P. S. & Kristoffersen, E. K. Severe human Babesia divergens infection in Norway. Int. J. Infect. Dis. 33, 37–38 (2015).

    Article  Google Scholar 

  • 39.

    Uhnoo, I. et al. First documented case of human babesiosis in Sweden. Scand. J. Infect. Dis. 24, 541–547 (2009).

    Article  Google Scholar 

  • 40.

    Dumler, J. S., Barat, N. C., Barat, C. E. & Bakken, J. S. Human granulocytic anaplasmosis and macrophage activation. Clin. Infect. Dis. 45, 199–204 (2007).

    CAS  Article  Google Scholar 

  • 41.

    Nilsson, K., Elfving, K. & Påhlson, C. Rickettsia helvetica in patient with meningitis, Sweden, 2006. Emerg. Infect. Dis. 16, 490–492 (2010).

    CAS  Article  Google Scholar 

  • 42.

    Frivik, J. O., Noraas, S., Grankvist, A., Wennerås, C. & Quarsten, H. En mann i 60-årene fra Sørlandet med intermitterende feber (In Norwegian). Tidsskr. Den Nor. legeforening 137, (2017).

  • 43.

    Grankvist, A. et al. Infections with the tick-borne bacterium ‘Candidatus Neoehrlichia mikurensis’ mimic noninfectious conditions in patients with B cell malignancies or autoimmune diseases. Clin. Infect. Dis. 58, 1716–1722 (2014).

    CAS  Article  Google Scholar 

  • 44.

    Welinder-Olsson, C., Kjellin, E., Vaht, K., Jacobsson, S. & Wenneras, C. First case of human ‘Candidatus Neoehrlichia mikurensis’ infection in a febrile patient with chronic lymphocytic leukemia. J. Clin. Microbiol. 48, 1956–1959 (2010).

    Article  Google Scholar 

  • 45.

    Rizzoli, A. et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front. Public Health 2, 251 (2014).

    Article  Google Scholar 

  • 46.

    Michelitsch, A., Wernike, K., Klaus, C., Dobler, G. & Beer, M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses vol. 11 (2019).

  • 47.

    Keesing, F. et al. Reservoir competence of vertebrate hosts for Anaplasma phagocytophilum. Emerg. Infect. Dis. 18, 2013–2016 (2012).

    Article  Google Scholar 

  • 48.

    Zhan, L. et al. Anaplasma phagocytophilum in livestock and small rodents. Vet. Microbiol. 144, 405–408 (2010).

    ADS  Article  Google Scholar 

  • 49.

    Portillo, A., Santibáñez, P., Palomar, A. M., Santibáñez, S. & Oteo, J. A. Candidatus Neoehrlichia mikurensis, Europe. New Microbes New Infect. 22, 30–36 (2018).

    CAS  Article  Google Scholar 

  • 50.

    Jenkins, A. et al. Detection of Candidatus Neoehrlichia mikurensis in Norway up to the northern limit of Ixodes ricinus distribution using a novel real time PCR test targeting the groEL gene. BMC Microbiol. 19, 199 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Obiegala, A. & Silaghi, C. Candidatus Neoehrlichia mikurensis—recent insights and future perspectives on clinical cases, vectors, and reservoirs in Europe. Curr. Clin. Microbiol. Rep. 5, 1–9 (2018).

    Google Scholar 

  • 52.

    Yabsley, M. J. & Shock, B. C. Natural history of zoonotic Babesia: role of wildlife reservoirs. Int. J. Parasitol. Parasites Wildl. 2, 18–31 (2013).

    PubMed  Google Scholar 

  • 53.

    Sprong, H. et al. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. Parasit. Vectors 2, 41 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Jaenson, T. G. T. et al. Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden. Med. Vet. Entomol. 23, 226–237 (2009).

    CAS  PubMed  Google Scholar 

  • 55.

    Hudson, P. J. et al. Tick-borne encephalitis virus in northern Italy: molecular analysis, relationships with density and seasonal dynamics of Ixodes ricinus. Med. Vet. Entomol. 15, 304–313 (2001).

    MathSciNet  CAS  Article  Google Scholar 

  • 56.

    Nazzi, F. et al. Ticks and Lyme borreliosis in an alpine area in northeast Italy. Med. Vet. Entomol. 24, 220–226 (2010).

    CAS  PubMed  Google Scholar 

  • 57.

    Hubalek, Z., Halouzka, J. & Juricova, Z. Longitudinal surveillance of the tick Ixodes ricinus for Borreliae. Med. Vet. Entomol. 17, 46–51 (2003).

    CAS  Article  Google Scholar 

  • 58.

    Lindström, A. & Jaenson, T. G. T. Distribution of the common tick, Ixodes ricinus (Acari: Ixodidae), in different vegetation types in southern Sweden. J. Med. Entomol. 40, 375–378 (2003).

    Article  Google Scholar 

  • 59.

    Mejlon, H. A. & Jaenson, T. G. T. Jaenson (1993) Seasonal prevalence of Borrelia burgdorferi in Ixodes ricinus in different vegetation types in Sweden. Scand. J. Infect. Dis. 25, 449–456 (2009).

    Article  Google Scholar 

  • 60.

    Tack, W. et al. Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. For. Ecol. Manag. 265, 30–36 (2012).

    Google Scholar 

  • 61.

    Walhström, L. K. & Kjellander, P. Ideal free distribution and natal dispersal in female roe deer. Oecologia 103, 302–308 (1995).

    ADS  PubMed  Google Scholar 

  • 62.

    Zeman, P. Objective assessment of risk maps of tick-borne encephalitis and Lyme borreliosis based on spatial patterns of located cases. Int. J. Epidemiol. 26, 1121–1129 (1997).

    CAS  PubMed  Google Scholar 

  • 63.

    Jat, M. K. & Mala, S. Application of GIS and space-time scan statistic for vector born disease clustering. In ICEGOV ’17 Proceedings of the 10th International Conference on Theory and Practice of Electronic Governance (2017) https://doi.org/10.1145/3047273.3047361.

  • 64.

    Hönig, V. et al. Model of risk of exposure to Lyme borreliosis and tick-borne encephalitis virus-infected ticks in the border area of the Czech Republic (South Bohemia) and Germany (Lower Bavaria and Upper Palatinate). Int. J. Environ. Res. Public Health 16, 1173 (2019).

    PubMed Central  Google Scholar 

  • 65.

    Randolph, S. E. & Rogers, D. J. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc. Biol. Sci. 267, 1741–1744 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Stefanoff, P. et al. A Predictive model has identified tick-borne encephalitis high-risk areas in regions where no cases were reported previously, Poland, 1999–2012. Int. J. Environ. Res. Public Health 15, 677 (2018).

    PubMed Central  Google Scholar 

  • 67.

    Kjær, L. J. et al. Predicting and mapping human risk of exposure to Ixodes ricinus nymphs using climatic and environmental data, Denmark, Norway and Sweden, 2016. Eurosurveillance 24, 1800101 (2019).

    PubMed Central  Google Scholar 

  • 68.

    Kjær, L. J. et al. Predicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic data. Sci. Rep. 9, 18144 (2019).

    ADS  Google Scholar 

  • 69.

    Kjær, L. J. et al. Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017. Collection https://doi.org/10.6084/m9.figshare.c.4938270.v1 (2020).

    Article  Google Scholar 

  • 70.

    Kjær, L. J. et al. Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017. Sci. Data 7, 1–7 (2020).

    Google Scholar 

  • 71.

    Scharlemann, J. P. W. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3, e1408 (2008).

    ADS  Article  Google Scholar 

  • 72.

    Corine Land Cover 2006 raster data. European Environment Agency https://www.eea.europa.eu/data-and-maps/data/clc-2006-raster (2010).

  • 73.

    Klitgaard, K., Chriél, M., Isbrand, A., Jensen, T. K. & Bødker, R. Identification of Dermacentor reticulatus ticks carrying Rickettsia raoultii on migrating jackal, Denmark. Emerg. Infect. Dis. 23, 2072–2074 (2017).

    Article  Google Scholar 

  • 74.

    Moutailler, S. et al. Co-infection of ticks: the rule rather than the exception. PLoS Negl. Trop. Dis. 10, e0004539 (2016).

    Article  CAS  Google Scholar 

  • 75.

    Reye, A. L. et al. Prevalence of tick-borne pathogens in Ixodes ricinus and Dermacentor reticulatus ticks from different geographical locations in Belarus. PLoS ONE 8, e54476 (2013).

    ADS  CAS  Article  Google Scholar 

  • 76.

    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org (2018).

  • 77.

    Cowling, D. W., Gardner, I. A. & Johnson, W. O. Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev. Vet. Med. 39, 211–225 (1999).

    CAS  Article  Google Scholar 

  • 78.

    ESRI. ArcGIS Desktop: Release 10.6.1. Redlands, CA: Environmental Systems Research Institute. (2017).

  • 79.

    Kulldorff M. and Information Management Services, I. SaTScanTM v9.6: Software for the spatial and space-time scan statistics www.satscan.org, 2018.

  • 80.

    Kleinman, K. rsatscan: Tools, classes, and methods for interfacing with SaTScan stand-alone software. (2015).

  • 81.

    Kulldorff, M. A spatial scan statistic. Communications in Statistics – Theory and Methods vol. 26 https://www.tandfonline.com/doi/abs/10.1080/03610929708831995 (1997).

  • 82.

    Han, J. et al. Using Gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics. Int. J. Health Geogr. 15, 27 (2016).

    Article  Google Scholar 

  • 83.

    Kuhn., M., Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, T., Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, A. Z. & Luca Scrucca, Yuan Tang, C. C. and T. H. caret: Classification and regression training. R package version 6.0-81. https://CRAN.R-project.org/package=caret. (2018).

  • 84.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS  Article  Google Scholar 

  • 85.

    Vapnik, V., Golowich, S. E. & Smola, A. Support vector method for function approximation, regression estimation, and signal processing. in Advances in Neural Information Processing Systems 9 (eds. Mozer, M., Jordan, M. & Petsche, T.) 281–287 (MIT Press., 1997).

  • 86.

    Sanz, H., Valim, C., Vegas, E., Oller, J. M. & Reverter, F. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinform. 19, 432 (2018).

    Article  Google Scholar 

  • 87.

    Ghojogh, B., Ca, B., Crowley, M. & Ca, M. The theory behind overfitting, cross validation, rRegularization, bagging, and boosting: tTutorial. https://arxiv.org/abs/1905.12787 [stat.ML] 1–23 (2019).

  • 88.

    Skarphédinsson, S., Jensen, P. M. & Kristiansen, K. Survey of tickborne infections in Denmark. Emerg. Infect. Dis. 11, 1055–1061 (2005).

    Article  Google Scholar 

  • 89.

    Quarsten, H., Skarpaas, T., Fajs, L., Noraas, S. & Kjelland, V. Tick-borne bacteria in Ixodes ricinus collected in southern Norway evaluated by a commercial kit and established real-time PCR protocols. Ticks Tick. Borne. Dis. 6, 538–544 (2015).

    CAS  Article  Google Scholar 

  • 90.

    Wilhelmsson, P. et al. Prevalence and diversity of Borrelia species in ticks that have bitten humans in Sweden. J. Clin. Microbiol. 48, 4169–4176 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 91.

    Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L. & Rego, R. O. M. Europe-wWide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol. 83, 3838 (2017).

    Google Scholar 

  • 92.

    Mysterud, A. et al. Tick abundance, pathogen prevalence, and disease incidence in two contrasting regions at the northern distribution range of Europe. Parasit. Vectors 11, 309 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 93.

    Severinsson, K., Jaenson, T. G., Pettersson, J., Falk, K. & Nilsson, K. Detection and prevalence of Anaplasma phagocytophilum and Rickettsia helvetica in Ixodes ricinus ticks in seven study areas in Sweden. Parasit. Vectors 3, 66 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 94.

    Karlsson, M. E. & Andersson, M. O. Babesia species in questing Ixodes ricinus, Sweden. Ticks Tick. Borne. Dis. 7, 10–12 (2016).

    PubMed  Google Scholar 

  • 95.

    Øines, Ø., Radzijevskaja, J., Paulauskas, A. & Rosef, O. Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasit. Vectors 5, 156 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 96.

    Andersson, M., Bartkova, S., Lindestad, O. & Råberg, L. Co-Infection with ‘Candidatus Neoehrlichia mikurensis’ and Borrelia afzelii in Ixodes ricinus Ticks in Southern Sweden. Vector-Borne Zoonotic Dis. 13, 438–442 (2013).

    PubMed  Google Scholar 

  • 97.

    Pedersen, B. N. et al. Distribution of Neoehrlichia mikurensis in Ixodes ricinus ticks along the coast of Norway: the western seaboard is a low-prevalence region. Zoonoses Public Health https://doi.org/10.1111/zph.12662 (2019).

    Article  PubMed  Google Scholar 

  • 98.

    Kantsø, B., Bo Svendsen, C., Moestrup Jensen, P., Vennestrøm, J. & Krogfelt, K. A. Seasonal and habitat variation in the prevalence of Rickettsia helvetica in Ixodes ricinus ticks from Denmark. Ticks Tick. Borne. Dis. 1, 101–103 (2010).

    PubMed  Google Scholar 

  • 99.

    Solano-Gallego, L., Sainz, Á., Roura, X., Estrada-Peña, A. & Miró, G. A review of canine babesiosis: the European perspective. Parasit. Vectors 9, 336 (2016).

    Article  CAS  Google Scholar 

  • 100.

    Randolph, S. E. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1045–1056 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 101.

    Sumilo, D. et al. Tick-borne encephalitis in the Baltic States : Identifying risk factors in space and time. Int. J. Med. Microbiol. 296(Suppl), 76–79 (2006).

    PubMed  Google Scholar 

  • 102.

    Sumilo, D. et al. Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe. Rev. Med. Virol. 18, 81–95 (2008).

    PubMed  Google Scholar 

  • 103.

    Randolph, S. E., Green, R. M., Peacey, M. F. & Rogers, D. J. Seasonal synchrony : the key to tick-borne encephalitis foci identified by satellite data. Parasitology 121, 15–23 (2000).

    PubMed  Google Scholar 

  • 104.

    Halos, L. et al. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Appl. Environ. Microbiol. 76, 4413–4420 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 105.

    Sjörs, H. Nordisk växtgeografi (in Swedish) (Bonniers, Scandinavian University Books, 1967).

    Google Scholar 


  • Source: Ecology - nature.com

    Pushing the envelope with fusion magnets

    Environmental Solutions Initiative puts sustainability front and center at the MIT career fair