Cavicchioli, R., Amils, R., Wagner, D. & McGenity, T. Life and applications of extremophiles. Environ. Microbiol. 13, 1903–1907 (2011).
Riesch, R., Tobler, M. & Plath, M. Extremophile Fishes (Springer, New York, 2015).
Wharton, D. A. Life at the Limits: Organisms in Extreme Environments (Cambridge University Press, Cambridge, 2007).
Lear, K. O. et al. Divergent field metabolic rates highlight the challenges of increasing temperatures and energy limitation in aquatic ectotherms. Oecologia 193, 311–323 (2020).
Elliott, K. H. et al. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins. Proc. Natl. Acad. Sci. 110, 9380–9384 (2013).
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Clarke, A. & Johnston, N. M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 893–905 (1999).
Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).
Kleiber, M. Body size and metabolism. ENE 1, 315–353 (1932).
Glazier, D. S. A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 85, 111–138 (2010).
Jerde, C. L. et al. Strong evidence for an intraspecific metabolic scaling coefficient near 0.89 in fish. Front. Physiol. 10, 1166 (2019).
van der Meer, J. Metabolic theories in ecology. Trends Ecol. Evol. 21, 136–140 (2006).
Luongo, S. M. & Lowe, C. G. Seasonally acclimated metabolic Q10 of the California horn shark, Heterodontus francisci. J. Exp. Mar. Bio. Ecol. 503, 129–135 (2018).
White, C. R., Alton, L. A. & Frappell, P. B. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proc. R. Soc. B Biol. Sci. 279, 1740–1747 (2011).
Krogh, A. The Quantitative Relation Between Temperature and Standard Metabolism in Animals (Internationale Zeitschrift fuÈr Physikalisch-Chemische Biologie, New York, 1914).
Messamah, B., Kellermann, V., Malte, H., Loeschcke, V. & Overgaard, J. Metabolic cold adaptation contributes little to the interspecific variation in metabolic rates of 65 species of Drosophilidae. J. Insect Physiol. 98, 309–316 (2017).
Holeton, G. F. Metabolic cold adaptation of polar fish: fact or artefact?. Physiol. Zool. 47, 137–152 (1974).
Steffensen, J. F. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!. Comp. Biochem. Physiol. A. 132, 789–795 (2002).
Peck, L. S. A cold limit to adaptation in the sea. Trends Ecol. Evol. 31, 13–26 (2016).
Chabot, D., Steffensen, J. F. & Farrell, A. P. The determination of standard metabolic rate in fishes. J. Fish Biol. 88, 81–121 (2016).
Lawson, C. L. et al. Powering ocean giants : the energetics of shark and ray megafauna. Trends Ecol. Evol. 34, 1–13 (2019).
Lowe, C. Metabolic rates of juvenile scalloped hammerhead sharks (Sphyrna lewini). Mar. Biol. 139, 447–453 (2001).
Payne, N. L. et al. A new method for resolving uncertainty of energy requirements in large water breathers: the ‘mega-flume’ seagoing swim-tunnel respirometer. Methods Ecol. Evol. 6, 668–677 (2015).
Byrnes, E. E., Lear, K. O., Morgan, D. L. & Gleiss, A. C. Respirometer in a box: development and use of a portable field respirometer for estimating oxygen consumption of large-bodied fishes. J. Fish Biol. 96, 1045–1050 (2020).
MacNeil, M. A. et al. Biology of the greenland shark Somniosus microcephalus. J. Fish Biol. 80, 991–1018 (2012).
Edwards, J. E. et al. Advancing research for the management of long-lived species: a case study on the Greenland shark. Front. Mar. Sci. 6, 12 (2019).
Augustine, S., Lika, K. & Kooijman, S. A. L. M. Comment on the ecophysiology of the Greenland shark, Somniosus microcephalus. Polar Biol. 40, 2429–2433 (2017).
Nielsen, J. et al. Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702–704 (2016).
Watanabe, Y. Y., Lydersen, C., Fisk, A. T. & Kovacs, K. M. The slowest fish: Swim speed and tail-beat frequency of Greenland sharks. J. Exp. Mar. Biol. Ecol. 426–427, 5–11 (2012).
Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).
Devine, B. M., Wheeland, L. J. & Fisher, J. A. D. First estimates of Greenland shark (Somniosus microcephalus) local abundances in Arctic waters. Sci. Rep. 8, 1–10 (2018).
Wilson, E. E. & Wolkovich, E. M. Scavenging: how carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).
Lear, K. O. et al. Correlations of metabolic rate and body acceleration in three species of coastal sharks under contrasting temperature regimes. J. Exp. Biol. 220, 397–407 (2017).
Killen, S. S., Atkinson, D. & Glazier, D. S. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol. Lett. 13, 184–193 (2010).
Lear, K. O., Whitney, N. M., Brewster, L. R. & Gleiss, A. C. Treading water: respirometer choice may hamper comparative studies of energetics in fishes. Mar. Freshw. Res. 70, 437–448 (2018).
Whitney, N. M., Lear, K. O., Gaskins, L. C. & Gleiss, A. C. The effects of temperature and swimming speed on the metabolic rate of the nurse shark (Ginglymostoma cirratum, Bonaterre). J. Exp. Mar. Bio. Ecol. 477, 40–46 (2016).
Sims, D. W. The effect of body size on the standard metabolic rate of the lesser spotted dogfish. J. Fish Biol. 48, 542–544 (1996).
Semmens, J. M., Payne, N. L., Huveneers, C., Sims, D. W. & Bruce, B. D. Feeding requirements of white sharks may be higher than originally thought. Sci. Rep. 3, 10–13 (2013).
Giacomin, M., Schulte, P. M. & Wood, C. M. Differential effects of temperature on oxygen consumption and branchial fluxes of urea, ammonia, and water in the dogfish shark (Squalus acanthias suckleyi). Physiol. Biochem. Zool. 90, 627–637 (2017).
Lowe, C. G. Bioenergetics of free-ranging juvenile scalloped hammerhead sharks (Sphyrna lewini) in Kāne’ohe Bay, Ō’ahu, HI. J. Exp. Mar. Biol. Ecol. 278, 141–156 (2002).
Ezcurra, J. M., Lowe, C. G., Mollet, H. F., Ferry, L. A. & O’Sullivan, J. B. Oxygen consumption rate of young-of-the-year white sharks, Carcharodon carcharias during transport to the Monterey Bay Aquarium. Glob. Perspect. Biol. Life Hist. 1, 17–26 (2012).
Barnett, A. et al. The utility of bioenergetics modelling in quantifying predation rates of marine apex predators: ecological and fisheries implications. Sci. Rep. 7, 12982 (2017).
Watanabe, Y. Y., Payne, N. L., Semmens, J. M., Fox, A. & Huveneers, C. Swimming strategies and energetics of endothermic white sharks during foraging. J. Exp. Biol. 222, 4 (2019).
Secor, S. M. Specific dynamic action: a review of the postprandial metabolic response. J. Comp. Physiol. B 179, 1–56 (2009).
Auer, S. K., Dick, C. A., Metcalfe, N. B. & Reznick, D. N. Metabolic rate evolves rapidly and in parallel with the pace of life history. Nat. Commun. 9, 8–13 (2018).
Drazen, J. C. & Seibel, B. A. Depth-related trends in metabolism of benthic and benthopelagic deep-sea fishes. Limnol. Oceanogr. 52, 2306–2316 (2007).
Brett, J. R. & Groves, T. D. D. Physiological energetics. Fish Physiol. 8, 280–352 (1979).
Widdows, J. Application of calorimetric methods in ecological studies. Therm. Energy. Stud. Cell. Biol. Syst. 1, 182–215 (1987).
Armstrong, J. B. & Schindler, D. E. Excess digestive capacity in predators reflects a life of feast and famine. Nature 476, 84–87 (2011).
Stirling, I. & McEwan, E. Caloric value of whole ringed seals (Phoca hispida) in relation to Polar Bear (Ursus maritimus) ecology and hunting behavior. Can. J. Zool. 53, 1021–1027 (1975).
Furey, N. B., Hinch, S. G., Mesa, M. G. & Beauchamp, D. A. Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse. J. Anim. Ecol. 85, 1307–1317 (2016).
Svendsen, M. B. S., Bushnell, P. G. & Steffensen, J. F. Design and setup of intermittent-flow respirometry system for aquatic organisms. J. Fish Biol. 88, 26–50 (2016).
Clark, T. D., Sandblom, E. & Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782 (2013).
Leclerc, L.-M.E. et al. A missing piece in the Arctic food web puzzle? Stomach contents of Greenland sharks sampled in Svalbard, Norway. Polar Biol. 35, 1197–1208 (2012).
Source: Ecology - nature.com