in

A first look at the metabolic rate of Greenland sharks (Somniosus microcephalus) in the Canadian Arctic

  • 1.

    Cavicchioli, R., Amils, R., Wagner, D. & McGenity, T. Life and applications of extremophiles. Environ. Microbiol. 13, 1903–1907 (2011).

    Article  Google Scholar 

  • 2.

    Riesch, R., Tobler, M. & Plath, M. Extremophile Fishes (Springer, New York, 2015).

    Google Scholar 

  • 3.

    Wharton, D. A. Life at the Limits: Organisms in Extreme Environments (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  • 4.

    Lear, K. O. et al. Divergent field metabolic rates highlight the challenges of increasing temperatures and energy limitation in aquatic ectotherms. Oecologia 193, 311–323 (2020).

    ADS  Article  Google Scholar 

  • 5.

    Elliott, K. H. et al. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins. Proc. Natl. Acad. Sci. 110, 9380–9384 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 7.

    Clarke, A. & Johnston, N. M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 893–905 (1999).

    Article  Google Scholar 

  • 8.

    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).

    Article  Google Scholar 

  • 9.

    Kleiber, M. Body size and metabolism. ENE 1, 315–353 (1932).

    Google Scholar 

  • 10.

    Glazier, D. S. A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 85, 111–138 (2010).

    Article  PubMed  Google Scholar 

  • 11.

    Jerde, C. L. et al. Strong evidence for an intraspecific metabolic scaling coefficient near 0.89 in fish. Front. Physiol. 10, 1166 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    van der Meer, J. Metabolic theories in ecology. Trends Ecol. Evol. 21, 136–140 (2006).

    Article  PubMed  Google Scholar 

  • 13.

    Luongo, S. M. & Lowe, C. G. Seasonally acclimated metabolic Q10 of the California horn shark, Heterodontus francisci. J. Exp. Mar. Bio. Ecol. 503, 129–135 (2018).

    Article  Google Scholar 

  • 14.

    White, C. R., Alton, L. A. & Frappell, P. B. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proc. R. Soc. B Biol. Sci. 279, 1740–1747 (2011).

    Article  CAS  Google Scholar 

  • 15.

    Krogh, A. The Quantitative Relation Between Temperature and Standard Metabolism in Animals (Internationale Zeitschrift fuÈr Physikalisch-Chemische Biologie, New York, 1914).

    Google Scholar 

  • 16.

    Messamah, B., Kellermann, V., Malte, H., Loeschcke, V. & Overgaard, J. Metabolic cold adaptation contributes little to the interspecific variation in metabolic rates of 65 species of Drosophilidae. J. Insect Physiol. 98, 309–316 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Holeton, G. F. Metabolic cold adaptation of polar fish: fact or artefact?. Physiol. Zool. 47, 137–152 (1974).

    Article  Google Scholar 

  • 18.

    Steffensen, J. F. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!. Comp. Biochem. Physiol. A. 132, 789–795 (2002).

    Article  Google Scholar 

  • 19.

    Peck, L. S. A cold limit to adaptation in the sea. Trends Ecol. Evol. 31, 13–26 (2016).

    Article  PubMed  Google Scholar 

  • 20.

    Chabot, D., Steffensen, J. F. & Farrell, A. P. The determination of standard metabolic rate in fishes. J. Fish Biol. 88, 81–121 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Lawson, C. L. et al. Powering ocean giants : the energetics of shark and ray megafauna. Trends Ecol. Evol. 34, 1–13 (2019).

    MathSciNet  Article  Google Scholar 

  • 22.

    Lowe, C. Metabolic rates of juvenile scalloped hammerhead sharks (Sphyrna lewini). Mar. Biol. 139, 447–453 (2001).

    Article  Google Scholar 

  • 23.

    Payne, N. L. et al. A new method for resolving uncertainty of energy requirements in large water breathers: the ‘mega-flume’ seagoing swim-tunnel respirometer. Methods Ecol. Evol. 6, 668–677 (2015).

    Article  Google Scholar 

  • 24.

    Byrnes, E. E., Lear, K. O., Morgan, D. L. & Gleiss, A. C. Respirometer in a box: development and use of a portable field respirometer for estimating oxygen consumption of large-bodied fishes. J. Fish Biol. 96, 1045–1050 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 25.

    MacNeil, M. A. et al. Biology of the greenland shark Somniosus microcephalus. J. Fish Biol. 80, 991–1018 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Edwards, J. E. et al. Advancing research for the management of long-lived species: a case study on the Greenland shark. Front. Mar. Sci. 6, 12 (2019).

    Article  Google Scholar 

  • 27.

    Augustine, S., Lika, K. & Kooijman, S. A. L. M. Comment on the ecophysiology of the Greenland shark, Somniosus microcephalus. Polar Biol. 40, 2429–2433 (2017).

    Article  Google Scholar 

  • 28.

    Nielsen, J. et al. Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702–704 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 29.

    Watanabe, Y. Y., Lydersen, C., Fisk, A. T. & Kovacs, K. M. The slowest fish: Swim speed and tail-beat frequency of Greenland sharks. J. Exp. Mar. Biol. Ecol. 426–427, 5–11 (2012).

    Article  Google Scholar 

  • 30.

    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).

    Article  Google Scholar 

  • 31.

    Devine, B. M., Wheeland, L. J. & Fisher, J. A. D. First estimates of Greenland shark (Somniosus microcephalus) local abundances in Arctic waters. Sci. Rep. 8, 1–10 (2018).

    CAS  Article  Google Scholar 

  • 32.

    Wilson, E. E. & Wolkovich, E. M. Scavenging: how carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).

    Article  Google Scholar 

  • 33.

    Lear, K. O. et al. Correlations of metabolic rate and body acceleration in three species of coastal sharks under contrasting temperature regimes. J. Exp. Biol. 220, 397–407 (2017).

    Article  Google Scholar 

  • 34.

    Killen, S. S., Atkinson, D. & Glazier, D. S. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol. Lett. 13, 184–193 (2010).

    Article  Google Scholar 

  • 35.

    Lear, K. O., Whitney, N. M., Brewster, L. R. & Gleiss, A. C. Treading water: respirometer choice may hamper comparative studies of energetics in fishes. Mar. Freshw. Res. 70, 437–448 (2018).

    Article  Google Scholar 

  • 36.

    Whitney, N. M., Lear, K. O., Gaskins, L. C. & Gleiss, A. C. The effects of temperature and swimming speed on the metabolic rate of the nurse shark (Ginglymostoma cirratum, Bonaterre). J. Exp. Mar. Bio. Ecol. 477, 40–46 (2016).

    Article  Google Scholar 

  • 37.

    Sims, D. W. The effect of body size on the standard metabolic rate of the lesser spotted dogfish. J. Fish Biol. 48, 542–544 (1996).

    Article  Google Scholar 

  • 38.

    Semmens, J. M., Payne, N. L., Huveneers, C., Sims, D. W. & Bruce, B. D. Feeding requirements of white sharks may be higher than originally thought. Sci. Rep. 3, 10–13 (2013).

    Article  CAS  Google Scholar 

  • 39.

    Giacomin, M., Schulte, P. M. & Wood, C. M. Differential effects of temperature on oxygen consumption and branchial fluxes of urea, ammonia, and water in the dogfish shark (Squalus acanthias suckleyi). Physiol. Biochem. Zool. 90, 627–637 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Lowe, C. G. Bioenergetics of free-ranging juvenile scalloped hammerhead sharks (Sphyrna lewini) in Kāne’ohe Bay, Ō’ahu, HI. J. Exp. Mar. Biol. Ecol. 278, 141–156 (2002).

    Article  Google Scholar 

  • 41.

    Ezcurra, J. M., Lowe, C. G., Mollet, H. F., Ferry, L. A. & O’Sullivan, J. B. Oxygen consumption rate of young-of-the-year white sharks, Carcharodon carcharias during transport to the Monterey Bay Aquarium. Glob. Perspect. Biol. Life Hist. 1, 17–26 (2012).

    Article  Google Scholar 

  • 42.

    Barnett, A. et al. The utility of bioenergetics modelling in quantifying predation rates of marine apex predators: ecological and fisheries implications. Sci. Rep. 7, 12982 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Watanabe, Y. Y., Payne, N. L., Semmens, J. M., Fox, A. & Huveneers, C. Swimming strategies and energetics of endothermic white sharks during foraging. J. Exp. Biol. 222, 4 (2019).

    Article  Google Scholar 

  • 44.

    Secor, S. M. Specific dynamic action: a review of the postprandial metabolic response. J. Comp. Physiol. B 179, 1–56 (2009).

    ADS  Article  PubMed  Google Scholar 

  • 45.

    Auer, S. K., Dick, C. A., Metcalfe, N. B. & Reznick, D. N. Metabolic rate evolves rapidly and in parallel with the pace of life history. Nat. Commun. 9, 8–13 (2018).

    ADS  Article  CAS  Google Scholar 

  • 46.

    Drazen, J. C. & Seibel, B. A. Depth-related trends in metabolism of benthic and benthopelagic deep-sea fishes. Limnol. Oceanogr. 52, 2306–2316 (2007).

    ADS  CAS  Article  Google Scholar 

  • 47.

    Brett, J. R. & Groves, T. D. D. Physiological energetics. Fish Physiol. 8, 280–352 (1979).

    Google Scholar 

  • 48.

    Widdows, J. Application of calorimetric methods in ecological studies. Therm. Energy. Stud. Cell. Biol. Syst. 1, 182–215 (1987).

    Article  Google Scholar 

  • 49.

    Armstrong, J. B. & Schindler, D. E. Excess digestive capacity in predators reflects a life of feast and famine. Nature 476, 84–87 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Stirling, I. & McEwan, E. Caloric value of whole ringed seals (Phoca hispida) in relation to Polar Bear (Ursus maritimus) ecology and hunting behavior. Can. J. Zool. 53, 1021–1027 (1975).

    CAS  Article  PubMed  Google Scholar 

  • 51.

    Furey, N. B., Hinch, S. G., Mesa, M. G. & Beauchamp, D. A. Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse. J. Anim. Ecol. 85, 1307–1317 (2016).

    Article  PubMed  Google Scholar 

  • 52.

    Svendsen, M. B. S., Bushnell, P. G. & Steffensen, J. F. Design and setup of intermittent-flow respirometry system for aquatic organisms. J. Fish Biol. 88, 26–50 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Clark, T. D., Sandblom, E. & Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782 (2013).

    Article  PubMed  Google Scholar 

  • 54.

    Leclerc, L.-M.E. et al. A missing piece in the Arctic food web puzzle? Stomach contents of Greenland sharks sampled in Svalbard, Norway. Polar Biol. 35, 1197–1208 (2012).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Pushing the envelope with fusion magnets

    Environmental Solutions Initiative puts sustainability front and center at the MIT career fair