in

Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans

  • 1.

    Engelmann, T. W. Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum. Bot. Zeit. 40, 419–426 (1882).

    Google Scholar 

  • 2.

    Engelmann, T. W. Farbe und assimilation. Bot. Zeit. 41, 1–29 (1883).

    Google Scholar 

  • 3.

    Stomp, M. et al. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432, 104–107 (2004).

    CAS  Google Scholar 

  • 4.

    Stomp, M., Huisman, J., Stal, L. J. & Matthijs, H. C. P. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J. 1, 271–282 (2007).

    CAS  Google Scholar 

  • 5.

    Pick, F. R. The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol. Oceanogr. 36, 1457–1462 (1991).

    CAS  Google Scholar 

  • 6.

    Vörös, L., Callieri, C., Balogh, K. V. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).

    Google Scholar 

  • 7.

    Stomp, M. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10, 290–298 (2007).

    Google Scholar 

  • 8.

    Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).

    CAS  Google Scholar 

  • 9.

    Grébert, T. et al. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc. Natl Acad. Sci. USA 115, E2010–E2019 (2018).

    Google Scholar 

  • 10.

    Luimstra, V. M., Verspagen, J. M. H., Xu, T., Schuurmans, J. M. & Huisman, J. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies. Ecology 101, e02951 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

  • 12.

    Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems 3rd edn (Cambridge Univ. Press, 2011).

  • 13.

    Dall’Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E. & Slade, W. H. Significant contribution of large particles to optical backscattering in the open ocean. Biogeosciences 6, 947–967 (2009).

    Google Scholar 

  • 14.

    Morel, A. et al. Optical properties of the “clearest” natural waters. Limnol. Oceanogr. 52, 217–229 (2007).

    CAS  Google Scholar 

  • 15.

    Pegau, W. S., Gray, D. & Zaneveld, J. R. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Opt. 36, 6035–6046 (1997).

    CAS  Google Scholar 

  • 16.

    Sogandares, F. M. & Fry, E. S. Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements. Appl. Opt. 36, 8699–8709 (1997).

    CAS  Google Scholar 

  • 17.

    Pope, R. M. & Fry, E. S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36, 8710–8723 (1997).

    CAS  Google Scholar 

  • 18.

    Mason, J. D., Cone, M. T. & Fry, E. S. Ultraviolet (250–550 nm) absorption spectrum of pure water. Appl. Opt. 55, 7163–7172 (2016).

    CAS  Google Scholar 

  • 19.

    Mobley, C. D. & Sundman, L. K. HydroLight 5.3—EcoLight 5.3 (Sequoia Scientific Inc., 2016).

  • 20.

    Sathyendranath, S., Brewin, R. J., Jackson, T., Mélin, F. & Platt, T. Ocean-colour products for climate-change studies: what are their ideal characteristics? Remote Sens. Environ. 203, 125–138 (2017).

    Google Scholar 

  • 21.

    Neeley, A. R. & Mannino, A. (eds) IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 1.0. Inherent Optical Property Measurements and Protocols: Absorption Coefficient (IOCCG, 2018).

  • 22.

    Farrant, G. K. et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc. Natl Acad. Sci. USA 113, E3365–E3374 (2016).

    CAS  Google Scholar 

  • 23.

    Chisholm, S. W. et al. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch. Microbiol. 157, 297–300 (1992).

    CAS  Google Scholar 

  • 24.

    Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106–127 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Moore, L. R., Goericke, R. & Chisholm, S. W. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 116, 259–275 (1995).

    Google Scholar 

  • 26.

    Tandeau de Marsac, N. Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res. 76, 193–205 (2003).

    Google Scholar 

  • 27.

    Six, C. et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 8, R259 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Watanabe, M. & Ikeuchi, M. Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth. Res. 116, 265–276 (2013).

    CAS  Google Scholar 

  • 29.

    Sanfilippo, J. E., Garczarek, L., Partensky, F. & Kehoe, D. M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73, 407–433 (2019).

    CAS  Google Scholar 

  • 30.

    Palenik, B. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67, 991–994 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Stomp, M. et al. The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. Am. Nat. 172, E169–E185 (2008).

    Google Scholar 

  • 32.

    Hirose, Y. et al. Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. Mol. Plant 12, 715–725 (2019).

    CAS  Google Scholar 

  • 33.

    Luimstra, V. M. et al. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth. Res. 138, 177–189 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Humily, F. et al. A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus. PLoS ONE 8, e84459 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Haverkamp, T. et al. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol. 10, 174–188 (2008).

    CAS  Google Scholar 

  • 36.

    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).

    CAS  Google Scholar 

  • 37.

    Chen, F. et al. Phylogenetic diversity of Synechococcus in the Chesapeake Bay revealed by ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) sequences. Aquat. Microb. Ecol. 36, 153–164 (2004).

    Google Scholar 

  • 38.

    Somogyi, B., Felföldi, T., Tóth, L. G., Bernát, G. & Vörös, L. Photoautotrophic picoplankton: a review on their occurrence, role and diversity in Lake Balaton. Biol. Futur. https://doi.org/10.1007/s42977-020-00030-8 (2020).

  • 39.

    Kardinaal, W. E. A. et al. Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl. Environ. Microbiol. 73, 2939–2946 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Bricaud, A., Claustre, H., Ras, J. & Oubelkheir, K. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J. Geophys. Res. 109, C11010 (2004).

    Google Scholar 

  • 41.

    Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–541 (2007).

    CAS  Google Scholar 

  • 42.

    Weyhenmeyer, G. A., Müller, R. A., Norman, M. & Tranvik, L. J. Sensitivity of freshwaters to browning in response to future climate change. Clim. Change 134, 225–239 (2016).

    Google Scholar 

  • 43.

    Kritzberg, E. S. Centennial‐long trends of lake browning show major effect of afforestation. Limnol. Oceanogr. Lett. 2, 105–112 (2017).

    Google Scholar 

  • 44.

    Leech, D. M., Pollard, A. I., Labou, S. G. & Hampton, S. E. Fewer blue lakes and more murky lakes across the continental U.S.: implications for planktonic food webs. Limnol. Oceanogr. 63, 2661–2680 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Ekvall, M. K. et al. Synergistic and species‐specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation. Freshw. Biol. 58, 2414–2422 (2013).

    CAS  Google Scholar 

  • 46.

    Urrutia‐Cordero, P. et al. Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms. Freshw. Biol. 62, 1869–1878 (2017).

    Google Scholar 

  • 47.

    Wilken, S. et al. Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning. Limnol. Oceanogr. 63, S142–S155 (2018).

    Google Scholar 

  • 48.

    Feuchtmayr, H. et al. Effects of brownification and warming on algal blooms, metabolism and higher trophic levels in productive shallow lake mesocosms. Sci. Tot. Environ. 678, 227–238 (2019).

    CAS  Google Scholar 

  • 49.

    Deininger, A., Faithfull, C. L. & Bergström, A. K. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon. Ecology 98, 982–994 (2017).

    CAS  Google Scholar 

  • 50.

    Tan, X., Zhang, D., Duan, Z., Parajuli, K. & Hu, J. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment. Environ. Sci. Pollut. Res. 27, 344–352 (2020).

    CAS  Google Scholar 

  • 51.

    Burson, A., Stomp, M., Greenwell, E., Grosse, J. & Huisman, J. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99, 1108–1118 (2018).

    Google Scholar 

  • 52.

    Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).

    Google Scholar 

  • 53.

    Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).

    CAS  Google Scholar 

  • 54.

    Malmstrom, R. R. et al. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific Oceans. ISME J. 4, 1252–1264 (2010).

    Google Scholar 

  • 55.

    Lange, P. K. et al. Scratching beneath the surface: a model to predict the vertical distribution of Prochlorococcus using remote sensing. Remote Sens. 10, 847 (2018).

    Google Scholar 

  • 56.

    Wernand, M. R., van der Woerd, H. J. & Gieskes, W. W. C. Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide. PLoS ONE 8, e63766 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Dutkiewicz, S. et al. Ocean colour signature of climate change. Nat. Commun. 10, 578 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Bricaud, A., Morel, A. & Prieur, L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26, 43–53 (1981).

    CAS  Google Scholar 

  • 59.

    Twardowski, M. S., Boss, E., Sullivan, J. M. & Donaghay, P. L. Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar. Chem. 89, 69–88 (2004).

    CAS  Google Scholar 

  • 60.

    Babin, M. et al. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 108, 1–20 (2003).

    Google Scholar 

  • 61.

    Babin, M., Morel, A., Fournier-Sicre, V., Fell, F. & Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 48, 843–859 (2003).

    Google Scholar 

  • 62.

    Doxaran, D. et al. Spectral variations of light scattering by marine particles in coastal waters, from the visible to the near infrared. Limnol. Oceanogr. 54, 1257–1271 (2009).

    CAS  Google Scholar 

  • 63.

    Nechad, B., Ruddick, K. G. & Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 114, 854–866 (2010).

    Google Scholar 

  • 64.

    Petzold, T. J. Volume Scattering Functions for Selected Ocean Waters (No. SIO-REF-72-78) (Scripps Institution of Oceanography, 1972).

  • 65.

    Morel, A. & Gentili, B. Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution. Appl. Opt. 30, 4427–4438 (1991).

    CAS  Google Scholar 

  • 66.

    Sathyendranath, S. et al. An ocean-colour time series for use in climate studies: the experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 19, 4285 (2019).

    CAS  Google Scholar 

  • 67.

    Holtrop, T. et al. Data: vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. https://doi.org/10.6084/m9.figshare.c.5140601.v1 (2020).

  • 68.

    Sanfilippo, J. E. et al. Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus. Proc. Natl Acad. Sci. USA 116, 6457–6462 (2019).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Pushing the envelope with fusion magnets

    Environmental Solutions Initiative puts sustainability front and center at the MIT career fair