in

DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates

  • 1.

    Bohonak, A. J. & Jenkins, D. G. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol. Lett. 6, 783–796 (2003).

    Article  Google Scholar 

  • 2.

    Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford Univ. Press, 2012).

  • 3.

    Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).

    Article  Google Scholar 

  • 4.

    Barton, P. S. et al. Guidelines for using movement science to inform biodiversity policy. Environ. Manage. 56, 791–801 (2015).

    ADS  Article  Google Scholar 

  • 5.

    Heino, J. et al. Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environ. Rev. 25, 334–349 (2017).

    Article  Google Scholar 

  • 6.

    Rundle, S. D., Bilton, D. T. & Foggo, A. in Body Size: The Structure and Function of Aquatic Ecosystems (eds. Hildrew, A. G., Raffaelli, D. G. & Edmonds-Brown, R.) 186–209 (Cambridge Univ. Press, 2007).

  • 7.

    Macneale, K. H., Peckarsky, B. L. & Likens, G. E. Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshw. Biol. 50, 1117–1130 (2005).

    Article  Google Scholar 

  • 8.

    Troast, D., Suhling, F., Jinguji, H., Sahlén, G. & Ware, J. A global population genetic study of Pantala flavescens. PLoS One 11, e0148949 (2016).

    Article  CAS  Google Scholar 

  • 9.

    French, S. K. & McCauley, S. J. The movement responses of three libellulid dragonfly species to open and closed landscape cover. Insect Conserv. Divers. 12, 437–447 (2019).

    Article  Google Scholar 

  • 10.

    Arribas, P. et al. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). J. Biogeogr. 39, 984–994 (2012).

    Article  Google Scholar 

  • 11.

    Lancaster, J. & Downes, B. J. Dispersal traits may reflect dispersal distances, but dispersers may not connect populations demographically. Oecologia 184, 171–182 (2017).

    ADS  Article  Google Scholar 

  • 12.

    Lancaster, J. & Downes, B. J. Aquatic Entomology (Oxford Univ. Press, 2013).

  • 13.

    Stevens, V. M. et al. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 6, 630–642 (2013).

    Article  Google Scholar 

  • 14.

    Outomuro, D. & Johansson, F. Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North-American dragonflies (Odonata: Libellulidae). Ecography 42, 309–320 (2019).

    Article  Google Scholar 

  • 15.

    Tonkin, J. D. et al. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol. 63, 141–163 (2018).

    Article  Google Scholar 

  • 16.

    Brown, B. L. & Swan, C. M. Dendritic network structure constrains metacommunity properties in riverine ecosystems. J. Anim. Ecol. 79, 571–580 (2010).

    CAS  Article  Google Scholar 

  • 17.

    Wikelski, M. et al. Simple rules guide dragonfly migration. Biol. Lett. 2, 325–329 (2006).

    Article  Google Scholar 

  • 18.

    Schmidt-Kloiber, A. & Hering, D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282, www.freshwaterecology.info (2015).

    Article  Google Scholar 

  • 19.

    Serra, S. R. Q., Cobo, F., Graça, M. A. S., Dolédec, S. & Feio, M. J. Synthesising the trait information of European Chironomidae (Insecta: Diptera): towards a new database. Ecol. Indic. 61, 282–292 (2016).

    Article  Google Scholar 

  • 20.

    Tachet, H., Richoux, P., Bournaud, M. & Usseglio-Polatera, P. Invertébrés d’Eau Douce: Systématique, Biologie, Écologie (CNRS Éditions, 2010).

  • 21.

    Vieira, N. K. M. et al. A Database of Lotic Invertebrate Traits for North America (U.S. Geological Survey Data Series 187, 2006).

  • 22.

    Chevenet, F., Dolédec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994).

    Article  Google Scholar 

  • 23.

    Schmera, D., Podani, J., Heino, J., Erös, T. & Poff, N. L. R. A proposed unified terminology of species traits in stream ecology. Freshw. Sci. 34, 823–830 (2015).

    Article  Google Scholar 

  • 24.

    Lancaster, J., Downes, B. J. & Arnold, A. Lasting effects of maternal behaviour on the distribution of a dispersive stream insect. J. Anim. Ecol. 80, 1061–1069 (2011).

    Article  Google Scholar 

  • 25.

    Jenkins, D. G. et al. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 16, 415–425 (2007).

    Article  Google Scholar 

  • 26.

    Harrison, R. G. Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 11, 95–118 (1980).

    Article  Google Scholar 

  • 27.

    Graham, E. S., Storey, R. & Smith, B. Dispersal distances of aquatic insects: upstream crawling by benthic EPT larvae and flight of adult Trichoptera along valley floors. New Zeal. J. Mar. Freshw. Res. 51, 146–164 (2017).

    Article  Google Scholar 

  • 28.

    Hoffsten, P. O. Site-occupancy in relation to flight-morphology in caddisflies. Freshw. Biol. 49, 810–817 (2004).

    Article  Google Scholar 

  • 29.

    Bonada, N. & Dolédec, S. Does the Tachet trait database report voltinism variability of aquatic insects between Mediterranean and Scandinavian regions? Aquat. Sci. 80, 1–11 (2018).

    Article  Google Scholar 

  • 30.

    Sarremejane, R. et al. DISPERSE, a trait database to assess the dispersal potential of aquatic macroinvertebrates. figshare https://doi.org/10.6084/m9.figshare.c.5000633 (2020).

  • 31.

    Lévêque, C., Balian, E. V. & Martens, K. An assessment of animal species diversity in continental waters. Hydrobiologia 542, 39–67 (2005).

    Article  Google Scholar 

  • 32.

    Green, A. J. & Figuerola, J. Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Divers. Distrib. 11, 149–156 (2005).

    Article  Google Scholar 

  • 33.

    Maasri, A. A global and unified trait database for aquatic macroinvertebrates: the missing piece in a global approach. Front. Environ. Sci. 7, 1–3 (2019).

    Article  Google Scholar 

  • 34.

    Cañedo-Argüelles, M. et al. Dispersal strength determines meta-community structure in a dendritic riverine network. J. Biogeogr. 42, 778–790 (2015).

    Article  Google Scholar 

  • 35.

    Datry, T. et al. Metacommunity patterns across three Neotropical catchments with varying environmental harshness. Freshw. Biol. 61, 277–292 (2016).

    Article  Google Scholar 

  • 36.

    Swan, C. M. & Brown, B. L. Metacommunity theory meets restoration: isolation may mediate how ecological communities respond to stream restoration. Ecol. Appl. 27, 2209–2219 (2017).

    Article  Google Scholar 

  • 37.

    Sarremejane, R., Mykrä, H., Bonada, N., Aroviita, J. & Muotka, T. Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks. Freshw. Biol. 62, 1073–1082 (2017).

    Article  Google Scholar 

  • 38.

    Jacobson, B. & Peres-Neto, P. R. Quantifying and disentangling dispersal in metacommunities: How close have we come? How far is there to go? Landsc. Ecol. 25, 495–507 (2010).

    Article  Google Scholar 

  • 39.

    Sarremejane, R. et al. Do metacommunities vary through time? Intermittent rivers as model systems. J. Biogeogr. 44, 2752–2763 (2017).

    Article  Google Scholar 

  • 40.

    Datry, T., Moya, N., Zubieta, J. & Oberdorff, T. Determinants of local and regional communities in intermittent and perennial headwaters of the Bolivian Amazon. Freshw. Biol. 61, 1335–1349 (2016).

    Article  Google Scholar 

  • 41.

    Cid, N. et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience 70, 427–438 (2020).

    Article  Google Scholar 

  • 42.

    Datry, T., Bonada, N. & Heino, J. Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos 125, 149–159 (2016).

    Article  Google Scholar 

  • 43.

    Hermoso, V., Cattarino, L., Kennard, M. J., Watts, M. & Linke, S. Catchment zoning for freshwater conservation: refining plans to enhance action on the ground. J. Appl. Ecol. 52, 940–949 (2015).

    Article  Google Scholar 

  • 44.

    Thuiller, W. et al. A road map for integrating eco-evolutionary processes into biodiversity models. Ecol. Lett. 16, 94–105 (2013).

    Article  Google Scholar 

  • 45.

    Mendes, P., Velazco, S. J. E., de Andrade, A. F. A. & De Marco, P. Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecol. Model. 431, 109180 (2020).

    Article  Google Scholar 

  • 46.

    Willis, S. G. et al. Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. Biol. Conserv. 190, 167–178 (2015).

    Article  Google Scholar 

  • 47.

    Cooper, J. C. & Soberón, J. Creating individual accessible area hypotheses improves stacked species distribution model performance. Glob. Ecol. Biogeogr. 27, 156–165 (2018).

    Article  Google Scholar 

  • 48.

    Markovic, D. et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).

    Article  Google Scholar 

  • 49.

    Bush, A. & Hoskins, A. J. Does dispersal capacity matter for freshwater biodiversity under climate change? Freshw. Biol. 62, 382–396 (2017).

    Article  Google Scholar 

  • 50.

    Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74, 21–45 (1999).

    CAS  Article  Google Scholar 

  • 51.

    Dijkstra, K.-D. B., Monaghan, M. T. & Pauls, S. U. Freshwater biodiversity and aquatic insect diversification. Annu. Rev. Entomol. 59, 143–163 (2014).

    CAS  Article  Google Scholar 

  • 52.

    Múrria, C. et al. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe. Mol. Ecol. 26, 6085–6099 (2017).

    Article  CAS  Google Scholar 

  • 53.

    Statzner, B. & Bêche, L. A. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshw. Biol. 55, 80–119 (2010).

    Article  Google Scholar 

  • 54.

    Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. North Am. Benthol. Soc. 29, 344–358 (2010).

    Article  Google Scholar 

  • 55.

    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Article  Google Scholar 

  • 56.

    R Core Team. R: A language and environment for statistical computing. https://www.r-project.org/ (2020).

  • 57.

    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 1, 1–20 (2007).

    Google Scholar 


  • Source: Ecology - nature.com

    Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale

    Power-free system harnesses evaporation to keep items cool