in

The effect of substrate wettability and modulus on gecko and gecko-inspired synthetic adhesion in variable temperature and humidity

  • 1.

    Autumn, K. et al. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. US 99, 12252–12256 (2002).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Autumn, K., Niewiarowski, P. H. & Puthoff, J. B. Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering. Annu. Rev. Ecol. Evol. Syst. 45, 445–470 (2014).

    Article  Google Scholar 

  • 3.

    Sitti, M. & Fearing, R. S. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J. Adhes. Sci. Technol. 17, 1055–1073 (2003).

    CAS  Article  Google Scholar 

  • 4.

    Kim, S. & Sitti, M. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl. Phys. Lett. 89, 261911 (2006).

    ADS  Article  CAS  Google Scholar 

  • 5.

    Murphy, M. P., Aksak, B. & Sitti, M. Gecko-inspired directional and controllable adhesion. Small 5, 170–175 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Murphy, M. P., Kim, S. & Sitti, M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Appl. Mater. Interfaces 1, 849–855 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Glass, P., Chung, H., Washburn, N. R. & Sitti, M. Enhanced wet adhesion of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p(DMA-co-MEA) tip coating. Langmuir 26, 17357–17362 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Mengüç, Y., Röhrig, M., Abusomwan, U., Hölscher, H. & Sitti, M. Staying sticky: Contact self-cleaning of gecko-inspired adhesives. J. R. Soc. Interface 11, 20131205 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Song, S. & Sitti, M. Soft grippers using micro-fibrillar adhesives for transfer printing. Adv. Mater. 26, 4901–4906 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Niewiarowski, P. H., Stark, A. Y. & Dhinojwala, A. Sticking to the story: Outstanding challenges in gecko-inspired adhesives. J. Exp. Biol. 219, 912–919 (2016).

    Article  PubMed  Google Scholar 

  • 11.

    Drotlef, D.-M., Amjadi, M., Yunusa, M. & Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 29, 1701353 (2017).

    Article  CAS  Google Scholar 

  • 12.

    Song, S., Drotlef, D.-M., Majidi, C. & Sitti, M. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces. Proc. Natl. Acad. Sci. 114, E4344–E4353 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Russell, A. P., Stark, A. Y. & Higham, T. E. The integrative biology of gecko adhesion: Historical review, current understanding, and grand challenges. Integr. Comp. Biol. 59, 101–116 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Stark, A. Y. & Mitchell, C. T. Stick or slip: Adhesive performance of geckos and gecko-inspired synthetics in wet environments. Integr. Comp. Biol. 59, 214–226 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Liimatainen, V., Drotlef, D.-M., Son, D. & Sitti, M. Liquid-superrepellent bioinspired fibrillar adhesives. Adv. Mater. 32, 2000497 (2020).

    CAS  Article  Google Scholar 

  • 16.

    Huber, G. et al. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. US 102, 16293–16296 (2005).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Sun, W., Neuzil, P., Kustandi, T. S., Oh, S. & Samper, V. D. The nature of the gecko lizard adhesive force. Biophys. J. 89, L14–L17 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Kim, T. W. & Bhushan, B. The adhesion model considering capillarity for gecko attachment system. J. R. Soc. Interface 5, 319–327 (2008).

    Article  PubMed  Google Scholar 

  • 19.

    Puthoff, J. B., Prowse, M. S., Wilkinson, M. & Autumn, K. Changes in materials properties explain the effects of humidity on gecko adhesion. J. Exp. Biol. 213, 3699–3704 (2010).

    Article  PubMed  Google Scholar 

  • 20.

    Prowse, M. S., Wilkinson, M., Puthoff, J. B., Mayer, G. & Autumn, K. Effects of humidity on the mechanical properties of gecko setae. Acta Biomater. 7, 733–738 (2011).

    Article  PubMed  Google Scholar 

  • 21.

    Bauer, A. M. & Good, D. A. Phylogenetic systematics of the day geckos, genus, Rhoptropus (Reptilia: Gekkonidae), of south-western Africa. J. Zool. 238, 635–663 (1996).

    Article  Google Scholar 

  • 22.

    Pianka, E. R. & Vitt, L. J. Lizards: Windows to the Evolution of Diversity (University of California Press, Berkeley, 2003).

    Google Scholar 

  • 23.

    Lamb, T. & Bauer, A. M. Footprints in the sand: Independent reduction of subdigital lamellae in the Namib–Kalahari burrowing geckos. Proc. R. Soc. B Biol. Sci. 273, 855–864 (2006).

    Article  Google Scholar 

  • 24.

    Gamble, T., Greenbaum, E., Jackman, T. R., Russell, A. P. & Bauer, A. M. Repeated origin and loss of adhesive toepads in geckos. PLoS ONE 7, e39429 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Collins, C. E., Russell, A. P. & Higham, T. E. Subdigital adhesive pad morphology varies in relation to structural habitat use in the Namib Day Gecko. Funct. Ecol. 29, 66–77 (2015).

    Article  Google Scholar 

  • 26.

    Autumn, K. & Hansen, W. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J. Comp. Physiol. A 192, 1205 (2006).

    Article  Google Scholar 

  • 27.

    Badge, I., Stark, A. Y., Paoloni, E. L., Niewiarowski, P. H. & Dhinojwala, A. The role of surface chemistry in adhesion and wetting of gecko toe pads. Sci. Rep. 4, 6643 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Maderson, P. F. A. Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 203, 780–781 (1964).

    ADS  Article  Google Scholar 

  • 29.

    Ruibal, R. & Ernst, V. The structure of the digital setae of lizards. J. Morphol. 117, 271–293 (1965).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Williams, E. E. & Peterson, J. A. Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215, 1509–1511 (1982).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 31.

    Autumn, K. et al. Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 32.

    Autumn, K. & Peattie, A. M. Mechanisms of adhesion in geckos. Integr. Comp. Biol. 42, 1081–1090 (2002).

    Article  PubMed  Google Scholar 

  • 33.

    Israelachvili, J. N. & Tabor, D. The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. Proc. R. Soc. Lond. Math. Phys. Sci. 331, 19–38 (1972).

    ADS  CAS  Google Scholar 

  • 34.

    Niewiarowski, P. H., Lopez, S., Ge, L., Hagan, E. & Dhinojwala, A. Sticky gecko feet: The role of temperature and humidity. PLoS ONE 3, e2192 (2008).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Hsu, P. Y. et al. Direct evidence of phospholipids in gecko footprints and spatula–substrate contact interface detected using surface-sensitive spectroscopy. J. R. Soc. Interface 9, 657–664 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Jain, D., Stark, A. Y., Niewiarowski, P. H., Miyoshi, T. & Dhinojwala, A. NMR spectroscopy reveals the presence and association of lipids and keratin in adhesive gecko setae. Sci. Rep. 5, 9594 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Alibardi, L. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in the regenerating lizard epidermis indicates a new process for the differentiation of the epidermis in lepidosaurians. J. Morphol. 273, 1272–1279 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Alibardi, L. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in pad lamellae of geckos suggest that glycine–cysteine-rich proteins contribute to their flexibility and adhesiveness. J. Exp. Zool. Part Ecol. Genet. Physiol. 319, 166–178 (2013).

    CAS  Article  Google Scholar 

  • 39.

    Peng, Z., Yang, Y. & Chen, S. Coupled effects of the temperature and the relative humidity on gecko adhesion. J. Phys. Appl. Phys. 50, 315402 (2017).

    ADS  Article  CAS  Google Scholar 

  • 40.

    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Huey, R. B., Niewiarowski, P. H., Kaufmann, J. & Herron, J. C. Thermal biology of nocturnal ectotherms: Is sprint performance of geckos maximal at low body temperatures?. Physiol. Zool. 62, 488–504 (1989).

    Article  Google Scholar 

  • 42.

    Bergmann, P. & Irschick, D. J. Effects of temperature on maximum acceleration, deceleration and power output during vertical running in geckos. J. Exp. Biol. 209, 1404–1412 (2006).

    Article  PubMed  Google Scholar 

  • 43.

    Losos, J. B. Thermal sensitivity of sprinting and clinging performance in the tokay gecko (Gekko gecko). Asiat. Herpetol. Res. 3, 54–59 (1990).

    ADS  Google Scholar 

  • 44.

    Bergmann, P. J. & Irschick, D. J. Effects of temperature on maximum clinging ability in a diurnal gecko: Evidence for a passive clinging mechanism?. J. Exp. Zool. A Comp. Exp. Biol. 303A, 785–791 (2005).

    Article  Google Scholar 

  • 45.

    Pesika, N. S. et al. Gecko adhesion pad: A smart surface?. J. Phys. Condens. Matter 21, 464132 (2009).

    Article  CAS  PubMed  Google Scholar 

  • 46.

    Grewal, S. H., Piao, S., Cho, I.-J., Jhang, K.-Y. & Yoon, E.-S. Nanotribological and wetting performance of hierarchical patterns. Soft Matter 12, 859–866 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 47.

    Stark, A. Y., Klittich, M. R., Sitti, M., Niewiarowski, P. H. & Dhinojwala, A. The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: Implications for the natural system. Sci. Rep. 6, 30936 (2016).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Cadirov, N., Booth, J. A., Turner, K. L. & Israelachvili, J. N. Influence of humidity on grip and release adhesion mechanisms for gecko-inspired microfibrillar surfaces. ACS Appl. Mater. Interfaces 9, 14497–14505 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Ceseracciu, L., Heredia-Guerrero, J. A., Dante, S., Athanassiou, A. & Bayer, I. S. Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS Appl. Mater. Interfaces 7, 3742–3753 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Stark, A. Y. et al. Surface wettability plays a significant role in gecko adhesion underwater. Proc. Natl. Acad. Sci. US. https://doi.org/10.1073/pnas.1219317110 (2013).

    Article  Google Scholar 

  • 51.

    Drotlef, D.-M., Dayan, C. B. & Sitti, M. Bio-inspired composite microfibers for strong and reversible adhesion on smooth surfaces. Integr. Comp. Biol. 59, 227–235 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Tan, D. et al. Humidity-modulated core–shell nanopillars for enhancement of gecko-inspired adhesion. ACS Appl. Nano Mater. 3, 3596–3603 (2020).

    CAS  Article  Google Scholar 

  • 53.

    Geikowsky, E., Gorumlu, S. & Aksak, B. The effect of flexible joint-like elements on the adhesive performance of nature-inspired bent mushroom-like fibers. Beilstein J. Nanotechnol. 9, 2893–2905 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Wang, Z. Slanted functional gradient micropillars for optimal bioinspired dry adhesion. ACS Nano 12, 1273–1284 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Moser, R. et al. From playroom to lab: Tough stretchable electronics analyzed with a tabletop tensile tester made from toy-bricks. Adv. Sci. 3, 1500396 (2016).

    Article  CAS  Google Scholar 

  • 56.

    BS EN ISO 527-2 Plastics-Determination of tensile properties. Br. Stand. BSI (1996).

  • 57.

    Kurian, A., Prasad, S. & Dhinojwala, A. Unusual surface aging of poly(dimethylsiloxane) elastomers. Macromolecules 43, 2438–2443 (2010).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Pinheiro, J., Bates, D., Debroy, S. & Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. R Core Team, R package version 3.1-137 (2018).

  • 59.

    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Core Team, R package version 1.3.4 (2019).

  • 60.

    Core Team. R: A Language and Environment for Statistical Computing (Core Team, Vienna, 2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed