in

Diversity begets diversity in mammal species and human cultures

  • 1.

    Mace, R. & Pagel, M. A latitudinal gradient in the density of human languages in North America. Proc. R. Soc. Lond. B 261, 117–121 (1995).

    ADS  Article  Google Scholar 

  • 2.

    Nettle, D. Linguistic diversity of the Americas can be reconciled with a recent colonization. Proc. Natl. Acad. Sci. 96, 3325–3329 (1999).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Collard, I. F. & Foley, R. A. Latitudinal patterns and environmental determinants of recent human cultural diversity: do humans follow biogeographical rules?. Evol. Ecol. Res. 4, 371–383 (2002).

    Google Scholar 

  • 4.

    Pagel, M. & Mace, R. The cultural wealth of nations. Nature 428, 275 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 5.

    Moore, J. L. et al. The distribution of cultural and biological diversity in Africa. Proc. R. Soc. Lond. B. Biol. Sci. 269, 1645–1653 (2002).

    Article  Google Scholar 

  • 6.

    Maffi, L. Linguistic, cultural, and biological diversity. Annu. Rev. Anthr. 34, 599–617 (2005).

    Article  Google Scholar 

  • 7.

    Harcourt, A. Human Biogeography (Univ of California Press, Berkeley, 2012).

    Google Scholar 

  • 8.

    Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).

    Article  Google Scholar 

  • 9.

    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  • 10.

    Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).

    Article  PubMed  Google Scholar 

  • 11.

    Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).

    Article  Google Scholar 

  • 12.

    Belmaker, J. & Jetz, W. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecol. Lett. 18, 563–571 (2015).

    Article  PubMed  Google Scholar 

  • 13.

    Yasuhara, M., Hunt, G., Cronin, T. M. & Okahashi, H. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proc. Natl. Acad. Sci. 106, 21717–21720 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 14.

    Kerkhoff, A. J., Moriarty, P. E. & Weiser, M. D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl. Acad. Sci. 111, 8125–8130 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 15.

    Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Article  Google Scholar 

  • 16.

    Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. For. 36, 454–489 (2017).

    Article  Google Scholar 

  • 17.

    Roy, K., Jablonski, D. & Martien, K. K. Invariant size–frequency distributions along a latitudinal gradient in marine bivalves. Proc. Natl. Acad. Sci. 97, 13150–13155 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 18.

    Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D. & Guénard, B. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 9, 1778 (2018).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Laenen, B. et al. Evolutionary origin of the latitudinal diversity gradient in liverworts. Mol. Phylogenet. Evol. 127, 606–612 (2018).

    Article  PubMed  Google Scholar 

  • 20.

    Guernier, V., Hochberg, M. E. & Guégan, J.-F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, e141 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Crame, J. A. Taxonomic diversity gradients through geological time. Divers. Distrib. 7, 175–189 (2001).

    Google Scholar 

  • 22.

    Mannion, P. D., Upchurch, P., Benson, R. B. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).

    Article  PubMed  Google Scholar 

  • 23.

    Nettle, D. Explaining global patterns of language diversity. J. Anthropol. Archaeol. 17, 354–374 (1998).

    Article  Google Scholar 

  • 24.

    Nettle, D. Linguistic Diversity (Oxford University Press, Oxford, 1999).

    Google Scholar 

  • 25.

    Allen, A. P., Brown, J. H. & Gillooly, J. F. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297, 1545–1548 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 26.

    Brown, J. H. Why are there so many species in the tropics?. J. Biogeogr. 41, 8–22 (2014).

    Article  PubMed  Google Scholar 

  • 27.

    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    Article  Google Scholar 

  • 28.

    Jablonski, D. The tropics as a source of evolutionary novelty through geological time. Nature 364, 142 (1993).

    ADS  Article  Google Scholar 

  • 29.

    Savage, V. M. Improved approximations to scaling relationships for species, populations, and ecosystems across latitudinal and elevational gradients. J. Theor. Biol. 227, 525–534 (2004).

    MATH  Article  PubMed  Google Scholar 

  • 30.

    Nettle, D. Language diversity in West Africa: an ecological approach. J. Anthropol. Archaeol. 15, 403–438 (1996).

    Article  Google Scholar 

  • 31.

    Michaletz, S., Cheng, D., Kerkhoff, A. & Enquist, B. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Lomolino, M. V., Riddle, B. R., Whittaker, R. J. & Brown, J. H. Biogeography (Sinauer, Sunderland, 2010).

    Google Scholar 

  • 33.

    Brown, J. H. et al. Macroecology meets macroeconomics: resource scarcity and global sustainability. Ecol. Eng. 65, 24–32 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Brown, J. H. et al. Energetic limits to economic growth. Bioscience 61, 19–26 (2011).

    Article  Google Scholar 

  • 35.

    Nekola, J. C. et al. The Malthusian–Darwinian dynamic and the trajectory of civilization. Trends Ecol. Evol. 28, 127–130 (2013).

    Article  Google Scholar 

  • 36.

    Burger, O., DeLong, J. P. & Hamilton, M. J. Industrial energy use and the human life history. Sci. Rep. 1, 56 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Burger, J. R., Weinberger, V. P. & Marquet, P. A. Extra-metabolic energy use and the rise in human hyper-density. Sci. Rep. 7, 43869 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).

    Article  Google Scholar 

  • 39.

    Brown, J. H. Two decades of homage to Santa Rosalia: toward a general theory of diversity. Am. Zool. 21, 877–888 (1981).

    ADS  Article  Google Scholar 

  • 40.

    Gavin, M. C. et al. Process-based modelling shows how climate and demography shape language diversity. Glob. Ecol. Biogeogr. 26, 584–591 (2017).

    Article  Google Scholar 

  • 41.

    Derungs, C., Köhl, M., Weibel, R. & Bickel, B. Environmental factors drive language density more in food-producing than in hunter–gatherer populations. Proc. R. Soc. B Biol. Sci. 285, 20172851 (2018).

    Article  Google Scholar 

  • 42.

    Gavin, M. C. et al. Toward a mechanistic understanding of linguistic diversity. Bioscience 63, 524–535 (2013).

    Article  Google Scholar 

  • 43.

    Túlio, P. C. M. et al. Drivers of geographical patterns of North American language diversity. Proc. R. Soc. B Biol. Sci. 286, 20190242 (2019).

    Article  Google Scholar 

  • 44.

    Tallavaara, M., Eronen, J. T. & Luoto, M. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. Proc. Natl. Acad. Sci. 115, 1232–1237 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Currie, T. E. & Mace, R. Political complexity predicts the spread of ethnolinguistic groups. Proc. Natl. Acad. Sci. 106, 7339–7344 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 46.

    Hamilton, M. J., Milne, B. T., Walker, R. S. & Brown, J. H. Nonlinear scaling of space use in human hunter–gatherers. Proc. Natl. Acad. Sci. 104, 4765–4769 (2007).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 47.

    Hamilton, M. J., Lobo, J., Rupley, E., Youn, H. & West, G. B. The ecological and evolutionary energetics of hunter-gatherer residential mobility. Evol. Anthropol. Issues News Rev. 25, 124–132 (2016).

    Article  Google Scholar 

  • 48.

    Hamilton, M. J., Walker, R. S., Buchanan, B. & Sandeford, D. S. Scaling human sociopolitical complexity. PLoS ONE 15, e0234615 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Enquist, B. J. et al. Scaling metabolism from organisms to ecosystems. Nature 423, 639–642 (2003).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 50.

    Kleiber, M. The fire of life. An introduction to animal energetics. Fire Life Introd. Anim. Energ. (1961).

  • 51.

    Brummer, A. B., Savage, V. M. & Enquist, B. J. A general model for metabolic scaling in self-similar asymmetric networks. PLoS Comput. Biol. 13, e1005394 (2017).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Hulbert, A. J. A sceptics view: “Kleiber’s Law” or the “3/4 Rule” is neither a law nor a rule but rather an empirical approximation. Systems 2, 186–202 (2014).

    Article  Google Scholar 

  • 53.

    Ballesteros, F. J. et al. On the thermodynamic origin of metabolic scaling. Sci. Rep. 8, 1448 (2018).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Kolokotrones, T., Savage, V., Deeds, E. J. & Fontana, W. Curvature in metabolic scaling. Nature 464, 753–756 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 55.

    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999).

    ADS  MathSciNet  CAS  MATH  Article  PubMed  Google Scholar 

  • 57.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 58.

    Savage, V. M. et al. The predominance of quarter-power scaling in biology. Funct. Ecol. 18, 257–282 (2004).

    Article  Google Scholar 

  • 59.

    Hunt, D. & Savage, V. M. Asymmetries arising from the space-filling nature of vascular networks. Phys. Rev. E 93, 062305 (2016).

    ADS  Article  CAS  PubMed  Google Scholar 

  • 60.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 61.

    Brown, J. H. & Sibly, R. M. The metabolic theory of ecology and its central equation. In Metabolic Ecology: A Scaling Approach (eds Sibly, R. M. et al.) 21–33 (Wiley and Sons, New York, 2012).

    Google Scholar 

  • 62.

    Anderson-Teixeira, K. J. & Vitousek, P. M. Ecosystems. In Metabolic Ecology: A Scaling Approach (eds Sibly, R. M. et al.) 99–111 (Wiley-Blackwell, New York, 2012).

    Google Scholar 

  • 63.

    Chapin, F. S. III., Matson, P. A. & Vitousek, P. Principles of Terrestrial Ecosystem Ecology (Springer, New York, 2011).

    Google Scholar 

  • 64.

    Falkowski, P. et al. The global carbon cycle: a test of our knowledge of earth as a system. Science 290, 291–296 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 65.

    Williams, M. et al. Predicting gross primary productivity in terrestrial ecosystems. Ecol. Appl. 7, 882–894 (1997).

    Article  Google Scholar 

  • 66.

    Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).

    Article  Google Scholar 

  • 67.

    Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature-dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).

    Article  PubMed  Google Scholar 

  • 68.

    Gillman, L. N., Keeling, D. J., Gardner, R. C. & Wright, S. D. Faster evolution of highly conserved DNA in tropical plants. J. Evol. Biol. 23, 1327–1330 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 69.

    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    Article  PubMed  Google Scholar 

  • 70.

    Martínez-Meyer, E., Townsend Peterson, A. & Hargrove, W. W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305–314 (2004).

    Article  Google Scholar 

  • 71.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton University Press, Princeton, 2001).

    Google Scholar 

  • 72.

    MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton University Press, Princeton, 1984).

    Google Scholar 

  • 73.

    Richerson, P. J. & Boyd, R. Not By Genes Alone (University of Chicago Press, Chicago, 2005).

    Google Scholar 

  • 74.

    Henrich, J. The Secret of Our Success: How Culture is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter (Princeton University Press, Princeton, 2017).

    Google Scholar 

  • 75.

    Turchin, P. Ultrasociety: How 10,000 Years of War Made Humans the Greatest Cooperators on Earth. (Beresta Books, 2015).

  • 76.

    Van Valen, L. The red queen. Am. Nat. 111, 809–810 (1977).

    Article  Google Scholar 

  • 77.

    Perreault, C. The Pace of cultural evolution. PLoS ONE 7, e45150 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 78.

    Perreault, C. The Quality of the Archaeological Record (University of Chicago Press, Chicago, 2019).

    Google Scholar 

  • 79.

    Greenhill, S. J., Atkinson, Q. D., Meade, A. & Gray, R. D. The shape and tempo of language evolution. Proc. R. Soc. Lond. B Biol. Sci. 277, 2443–2450 (2010).

    CAS  Google Scholar 

  • 80.

    Moore, G. E. Cramming more components onto integrated circuits, Electronics, 38: 8 (1965). URL Ftpdownload Intel Comresearchsiliconmoorespaper Pdf 16, (2005).

  • 81.

    Youn, H., Strumsky, D., Bettencourt, L. M. & Lobo, J. Invention as a combinatorial process: evidence from US patents. J. R. Soc. Interface 12, 20150272 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 82.

    Magurran, A. E. Measuring Biological Diversity (Wiley, New York, 2004).

    Google Scholar 

  • 83.

    Cavalli-Sforza, L. L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton University Press, Princeton, 1981).

    Google Scholar 

  • 84.

    Henrich, J. & McElreath, R. The evolution of cultural evolution. Evol. Anthropol. Issues News Rev. 12, 123–135 (2003).

    Article  Google Scholar 

  • 85.

    Prothero, D. R. Species longevity in North American fossil mammals. Integr. Zool. 9, 383–393 (2014).

    Article  PubMed  Google Scholar 

  • 86.

    Erwin, D. H. Macroevolution is more than repeated rounds of microevolution. Evol. Dev. 2, 78–84 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 87.

    Walker, R. S., Wichmann, S., Mailund, T. & Atkisson, C. J. Cultural phylogenetics of the Tupi language family in lowland South America. PLoS ONE 7, e35025 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 88.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 89.

    Cramer, W. et al. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol. 5, 1–15 (1999).

    Article  Google Scholar 

  • 90.

    Wessel, P. & Smith, W. H. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 101, 8741–8743 (1996).

    Article  Google Scholar 

  • 91.

    Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. (2014).


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed