in

Low Omega-3 intake is associated with high rates of depression and preterm birth on the country level

  • 1.

    Jarde, A. et al. Neonatal outcomes in women with untreated antenatal depression compared with women without depression: a systematic review and meta-analysis. JAMA Psychiatry 73, 826–837 (2016).

    Article  PubMed  Google Scholar 

  • 2.

    Venkatesh, K. K., Ferguson, K. K., Smith, N. A., Cantonwine, D. E. & McElrath, T. F. Association of antenatal depression with clinical subtypes of preterm birth. Am. J. Perinatol. 36, 567–573 (2019).

    Article  PubMed  Google Scholar 

  • 3.

    Grigoriadis, S. et al. The impact of maternal depression during pregnancy on perinatal outcomes: a systematic review and meta-analysis. J. Clin. Psychiatry 74, e321–e341 (2013).

    Article  PubMed  Google Scholar 

  • 4.

    Fekadu Dadi, A., Miller, E. R. & Mwanri, L. Antenatal depression and its association with adverse birth outcomes in low and middle-income countries: a systematic review and meta-analysis. PLoS ONE 15, e0227323 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Huang, H., Coleman, S., Bridge, J. A., Yonkers, K. & Katon, W. A meta-analysis of the relationship between antidepressant use in pregnancy and the risk of preterm birth and low birth weight. Gen. Hosp. Psychiatry 36, 13–18 (2014).

    Article  PubMed  Google Scholar 

  • 6.

    Huybrechts, K. F., Sanghani, R. S., Avorn, J. & Urato, A. C. Preterm birth and antidepressant medication use during pregnancy: a systematic review and meta-analysis. PLoS ONE 9, e92778 (2014).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Ross, L. E. et al. Selected pregnancy and delivery outcomes after exposure to antidepressant medication: a systematic review and meta-analysis. JAMA Psychiatry 70, 436–443 (2013).

    Article  PubMed  Google Scholar 

  • 8.

    Fitton, C. A. et al. In utero exposure to antidepressant medication and neonatal and child outcomes: a systematic review. Acta Psychiatr. Scand. 141, 21–33 (2019).

    Article  PubMed  Google Scholar 

  • 9.

    Adhikari, K., Patten, S. B., Lee, S. & Metcalfe, A. Risk of adverse perinatal outcomes among women with pharmacologically treated and untreated depression during pregnancy: a retrospective cohort study. Paediatr. Perinat. Epidemiol. 33, 323–331 (2019).

    Article  PubMed  Google Scholar 

  • 10.

    Corti, S. et al. Neonatal outcomes in maternal depression in relation to intrauterine drug exposure. Front. Pediatr. 7, 309 (2019).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Gelaye, B., Rondon, M. B., Araya, R. & Williams, M. A. Epidemiology of maternal depression, risk factors, and child outcomes in low-income and middle-income countries. Lancet Psychiatry 3, 973–982 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379, 2162–2172 (2012).

    Article  PubMed  Google Scholar 

  • 13.

    Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Nemoda, Z. & Szyf, M. Epigenetic alterations and prenatal maternal depression. Birth Defects Res. 109, 888–897 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Rakers, F. et al. Transfer of maternal psychosocial stress to the fetus. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2017.02.019 (2017).

    Article  PubMed  Google Scholar 

  • 16.

    Kinsella, M. T. & Monk, C. Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clin. Obstet. Gynecol. 52, 425–440 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring Healthy. 10, Mortality and acute complications in preterm infants. In Preterm Birth: Causes, Consequences, and Prevention (eds Behrman, R. E. & Butler, A. S.) (National Academies Press, Washington, 2007).

    Google Scholar 

  • 18.

    Moster, D., Lie, R. T. & Markestad, T. Long-term medical and social consequences of preterm birth. N. Engl. J. Med. 359, 262–273 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Firth, J. et al. The efficacy and safety of nutrient supplements in the treatment of mental disorders: a meta-review of meta-analyses of randomized controlled trials. World Psychiatry 18, 308–324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Hallahan, B. et al. Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br. J. Psychiatry 209, 192–201 (2016).

    Article  PubMed  Google Scholar 

  • 21.

    van der Burg, K. P. et al. EPA and DHA as markers of nutraceutical treatment response in major depressive disorder. Eur. J. Nutr. 59, 2439–2447 (2020).

    Article  CAS  PubMed  Google Scholar 

  • 22.

    Ciesielski, T. H., Bartlett, J. & Williams, S. M. Omega-3 polyunsaturated fatty acid intake norms and preterm birth rate: a cross-sectional analysis of 184 countries. BMJ Open 9, e027249 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Bozzatello, P., Rocca, P., Mantelli, E. & Bellino, S. Polyunsaturated fatty acids: what is their role in treatment of psychiatric disorders?. Int. J. Mol. Sci. 20, 5257 (2019).

    CAS  Article  PubMed Central  Google Scholar 

  • 24.

    Appleton, K. M., Sallis, H. M., Perry, R., Ness, A. R. & Churchill, R. Omega-3 fatty acids for depression in adults. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004692.pub4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Middleton, P. et al. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003402.pub3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Makrides, M. et al. A randomized trial of prenatal n-3 fatty acid supplementation and preterm delivery. N. Engl. J. Med. 381, 1035–1045 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Olsen, S. F. et al. Examining the effect of fish oil supplementation in chinese pregnant women on gestation duration and risk of preterm delivery. J. Nutr. 149, 1942–1951 (2019).

    Article  PubMed  Google Scholar 

  • 28.

    Makrides, M. et al. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA 304, 1675–1683 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Olsen, S. F. et al. Randomised controlled trial of effect of fish-oil supplementation on pregnancy duration. Lancet 339, 1003–1007 (1992).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Olsen, S. F. et al. Randomised clinical trials of fish oil supplementation in high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP) Team. BJOG 107, 382–395 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Peet, M., Murphy, B., Shay, J. & Horrobin, D. Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol. Psychiatry 43, 315–319 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    McNamara, R. K. et al. Selective deficits in erythrocyte docosahexaenoic acid composition in adult patients with bipolar disorder and major depressive disorder. J. Affect. Disord. 126, 303–311 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Riemer, S., Maes, M., Christophe, A. & Rief, W. Lowered omega-3 PUFAs are related to major depression, but not to somatization syndrome. J. Affect. Disord. 123, 173–180 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Assies, J. et al. Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study. PLoS ONE 5, e10635 (2010).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Maes, M. et al. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res. 85, 275–291 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Lin, P. Y., Chang, C. H., Chong, M. F., Chen, H. & Su, K. P. Polyunsaturated fatty acids in perinatal depression: a systematic review and meta-analysis. Biol. Psychiatry 82, 560–569 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Olsen, S. F. et al. Plasma concentrations of long chain N-3 fatty acids in early and mid-pregnancy and risk of early preterm birth. EBioMedicine 35, 325–333 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Olsen, S. F. et al. Corrigendum to ‘Plasma concentrations of long chain N-3 fatty acids in early and mid-pregnancy and risk of early preterm birth’. EBioMedicine 51, 102619 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Grosso, G. et al. Dietary n-3 PUFA, fish consumption and depression: a systematic review and meta-analysis of observational studies. J. Affect. Disord. 205, 269–281 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Golding, J., Steer, C., Emmett, P., Davis, J. M. & Hibbeln, J. R. High levels of depressive symptoms in pregnancy with low omega-3 fatty acid intake from fish. Epidemiology 20, 598–603 (2009).

    Article  PubMed  Google Scholar 

  • 41.

    Olsen, S. F. et al. Intake of marine fat, rich in (n-3)-polyunsaturated fatty acids, may increase birthweight by prolonging gestation. Lancet 2, 367–369 (1986).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 42.

    Ciesielski, T. H. n-3 and preterm birth: what can we learn from the heterogeneity?. Public Health Nutr. 23, 2453–2454 (2020).

    Article  PubMed  Google Scholar 

  • 43.

    Grosso, G. et al. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxid. Med. Cell Longev. 2014, 313570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Larrieu, T. & Laye, S. Food for mood: relevance of nutritional omega-3 fatty acids for depression and anxiety. Front. Physiol. 9, 1047 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Burhani, M. D. & Rasenick, M. M. Fish oil and depression: the skinny on fats. J. Integr. Neurosci. 16, S115-s124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Facchinetti, F., Fazzio, M. & Venturini, P. Polyunsaturated fatty acids and risk of preterm delivery. Eur. Rev. Med. Pharmacol. Sci. 9, 41–48 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Chen, C. Y., Chen, C. Y., Liu, C. C. & Chen, C. P. Omega-3 polyunsaturated fatty acids reduce preterm labor by inhibiting trophoblast cathepsin S and inflammasome activation. Clin. Sci. 132, 2221–2239 (2018).

    CAS  Google Scholar 

  • 48.

    Elliott, E., Hanson, C. K., Anderson-Berry, A. L. & Nordgren, T. M. The role of specialized pro-resolving mediators in maternal-fetal health. Prostaglandins Leukot Essent Fat. Acids 126, 98–104 (2017).

    CAS  Article  Google Scholar 

  • 49.

    Liu, L. et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379, 2151–2161 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Grosse, S. D., Waitzman, N. J., Yang, N., Abe, K. & Barfield, W. D. Employer-sponsored plan expenditures for infants born preterm. Pediatrics 140, e20171078 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    McLaurin, K. K. et al. Characteristics and health care utilization of otherwise healthy commercially and Medicaid-insured preterm and full-term infants in the US. Pediatr. Health Med. Ther. 10, 21–31 (2019).

    Article  Google Scholar 

  • 52.

    Ferrari, A. J. et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med 10, e1001547 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Konig, H., Konig, H. H. & Konnopka, A. The excess costs of depression: a systematic review and meta-analysis. Epidemiol. Psychiatr. Sci. 29, 1–16 (2020).

    Article  Google Scholar 

  • 54.

    Institute of Medicine (US) Roundtable on Environmental Health Sciences. 1, Preterm birth and its consequences. In The Role of Environmental Hazards in Premature Birth: Workshop Summary (eds Donald, R. & Mattison, S. W.) (National Academies Press, Washington, 2003).

    Google Scholar 

  • 55.

    Frey, H. A. & Klebanoff, M. A. The epidemiology, etiology, and costs of preterm birth. Semin. Fetal Neonatal Med. 21, 68–73 (2016).

    Article  PubMed  Google Scholar 

  • 56.

    Micha, R. et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 348, g2272 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 350, h1702. https://doi.org/10.1136/bmj.h1702 (2015).

  • 58.

    Ferrari, A. J. et al. The epidemiological modelling of major depressive disorder: application for the Global Burden of Disease Study 2010. PLoS ONE 8, e69637 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163–2196 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    World-Health-Organization. The ICD-10 Classification of mental and behavioural disorders. Clinical descriptions and diagnostic guidelines (World Health Organization, Geneva, 1992).

    Google Scholar 

  • 61.

    Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Micha, R. et al. Estimating the global and regional burden of suboptimal nutrition on chronic disease: methods and inputs to the analysis. Eur. J. Clin. Nutr. 66, 119–129 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 63.

    Burdge, G. C. & Wootton, S. A. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 88, 411–420 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 64.

    Burdge, G. C., Jones, A. E. & Wootton, S. A. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men*. Br. J. Nutr. 88, 355–363 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 65.

    Calder, P. C. Docosahexaenoic acid. Ann. Nutr. Metab. 69(Suppl 1), 7–21 (2016).

    PubMed  Google Scholar 

  • 66.

    Innis, S. M. Omega-3 fatty acid biochemistry: perspectives from human nutrition. Mil. Med. 179, 82–87 (2014).

    Article  PubMed  Google Scholar 

  • 67.

    Schmitz, G. & Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 47, 147–155 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 68.

    Ameur, A. et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am. J. Hum. Genet. 90, 809–820 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 69.

    Zhang, J. Y., Kothapalli, K. S. & Brenna, J. T. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis. Curr. Opin. Clin. Nutr. Metab. Care 19, 103–110 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Wood, S. N. Package ’mgcv’ (Accessed 1 November 2020); https://cran.r-project.org/web/packages/mgcv/mgcv.pdf.

  • 71.

    Craven, P. & Wahba, G. Smoothing noisy data with spline functions – estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377–403 (1979).

    MathSciNet  MATH  Article  Google Scholar 

  • 72.

    Ciesielski, T. H., Marsit, C. J. & Williams, S. M. Maternal psychiatric disease and epigenetic evidence suggest a common biology for poor fetal growth. BMC Pregnancy Childbirth 15, 192 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Szegda, K., Markenson, G., Bertone-Johnson, E. R. & Chasan-Taber, L. Depression during pregnancy: a risk factor for adverse neonatal outcomes? A critical review of the literature. J. Matern. Fetal Neonatal Med. 27, 960–967 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 74.

    Bai, S. et al. Efficacy and safety of anti-inflammatory agents for the treatment of major depressive disorder: a systematic review and meta-analysis of randomised controlled trials. J. Neurol. Neurosurg. Psychiatry 91, 21–32 (2020).

    Article  PubMed  Google Scholar 

  • 75.

    Liao, Y. et al. Efficacy of omega-3 PUFAs in depression: a meta-analysis. Transl. Psychiatry 9, 190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Ciesielski, T. H. et al. Diverse convergent evidence in the genetic analysis of complex disease: coordinating omic, informatic, and experimental evidence to better identify and validate risk factors. BioData Min. 7, 10 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 77.

    Gananca, L. et al. Lipid correlates of antidepressant response to omega-3 polyunsaturated fatty acid supplementation: a pilot study. Prostaglandins Leukot Essent Fat. Acids 119, 38–44 (2017).

    CAS  Article  Google Scholar 

  • 78.

    Meyer, B. J. et al. Improvement of major depression is associated with increased erythrocyte DHA. Lipids 48, 863–868 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 79.

    Hoge, A. et al. Impact of erythrocyte long-chain omega-3 polyunsaturated fatty acid levels in early pregnancy on birth outcomes: findings from a Belgian cohort study. J. Perinatol. 40, 488–496 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 80.

    Jackson, K. H. & Harris, W. S. A prenatal DHA test to help identify women at increased risk for early preterm birth: a proposal. Nutrients 10, 1933 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  • 81.

    Rothman, K. J. Causes. Am. J. Epidemiol. 104, 587–592 (1976).

    CAS  Article  PubMed  Google Scholar 

  • 82.

    Howards, P. P. An overview of confounding. Part 2: how to identify it and special situations. Acta Obstet. Gynecol. Scand. 97, 400–406 (2018).

    Article  PubMed  Google Scholar 

  • 83.

    Suttorp, M. M., Siegerink, B., Jager, K. J., Zoccali, C. & Dekker, F. W. Graphical presentation of confounding in directed acyclic graphs. Nephrol. Dial. Transpl. 30, 1418–1423 (2015).

    Article  Google Scholar 

  • 84.

    Bloomfield, F. H. How is maternal nutrition related to preterm birth?. Annu. Rev. Nutr. 31, 235–261 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 85.

    Zhou, S. S., Tao, Y. H., Huang, K., Zhu, B. B. & Tao, F. B. Vitamin D and risk of preterm birth: up-to-date meta-analysis of randomized controlled trials and observational studies. J. Obstet. Gynaecol. Res. 43, 247–256 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 86.

    Ferguson, K. K., O’Neill, M. S. & Meeker, J. D. Environmental contaminant exposures and preterm birth: a comprehensive review. J. Toxicol. Environ. Health B Crit. Rev. 16, 69–113 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 87.

    van den Bosch, M. & Meyer-Lindenberg, A. Environmental exposures and depression: biological mechanisms and epidemiological evidence. Annu. Rev. Public Health 40, 239–259 (2019).

    Article  PubMed  Google Scholar 

  • 88.

    Rautio, N., Filatova, S., Lehtiniemi, H. & Miettunen, J. Living environment and its relationship to depressive mood: a systematic review. Int. J. Soc. Psychiatry 64, 92–103 (2018).

    Article  PubMed  Google Scholar 

  • 89.

    Bender, A., Hagan, K. E. & Kingston, N. The association of folate and depression: a meta-analysis. J. Psychiatr. Res. 95, 9–18 (2017).

    Article  PubMed  Google Scholar 

  • 90.

    Zhang, Q. et al. Effect of folic acid supplementation on preterm delivery and small for gestational age births: a systematic review and meta-analysis. Reprod. Toxicol. 67, 35–41 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 91.

    Jamilian, H. et al. The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: a systematic review and meta-analysis of randomized controlled trials. Prog. Neuropsychopharmacol. Biol. Psychiatry 94, 109651 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 92.

    Schisterman, E. F., Cole, S. R. & Platt, R. W. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiol. Camb. Mass 20, 488–495 (2009).

    Article  Google Scholar 

  • 93.

    Howards, P. P., Schisterman, E. F. & Heagerty, P. J. Potential confounding by exposure history and prior outcomes: an example from perinatal epidemiology. Epidemiology 18, 544–551 (2007).

    Article  PubMed  Google Scholar 

  • 94.

    Wilson, N. A., Mantzioris, E., Middleton, P. T. & Muhlhausler, B. S. Gestational age and maternal status of DHA and other polyunsaturated fatty acids in pregnancy: A systematic review. Prostaglandins Leukot. Essent. Fatty Acids 144, 16–31 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 95.

    Wilson, N. A., Mantzioris, E., Middleton, P. F. & Muhlhausler, B. S. Influence of sociodemographic, lifestyle and genetic characteristics on maternal DHA and other polyunsaturated fatty acid status in pregnancy: a systematic review. Prostaglandins Leukot. Essent. Fatty Acids 152, 102037 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 96.

    Wilson, N. A., Mantzioris, E., Middleton, P. F. & Muhlhausler, B. S. Influence of clinical characteristics on maternal DHA and other polyunsaturated fatty acid status in pregnancy: a systematic review. Prostaglandins Leukot. Essent. Fatty Acids 154, 102063 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 97.

    Sparkes, C., Sinclair, A. J., Gibson, R. A., Else, P. L. & Meyer, B. J. High variability in erythrocyte, plasma and whole blood EPA and DHA levels in response to supplementation. Nutrients 12, 1017 (2020).

    CAS  Article  PubMed Central  Google Scholar 

  • 98.

    Zemdegs, J. et al. Anxiolytic- and antidepressant-like effects of fish oil-enriched diet in brain-derived neurotrophic factor deficient mice. Front. Neurosci. 12, 974 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 99.

    Yamashita, A. et al. Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth. Sci. Rep. 3, 3113 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 100.

    Pearce, N. The ecological fallacy strikes back. J. Epidemiol. Commun. Health 54, 326–327 (2000).

    MathSciNet  CAS  Article  Google Scholar 

  • 101.

    Morgenstern, H. Ecologic studies in epidemiology: concepts, principles, and methods. Annu. Rev. Public Health 16, 61–81 (1995).

    CAS  Article  PubMed  Google Scholar 

  • 102.

    Ciesielski, T. H., Aldrich, M. C., Marsit, C. J., Hiatt, R. A. & Williams, S. M. Transdisciplinary approaches enhance the production of translational knowledge. Transl. Res. 182, 123–134 (2017).

    Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed