in

Interaction of liming and long-term fertilization increased crop yield and phosphorus use efficiency (PUE) through mediating exchangeable cations in acidic soil under wheat–maize cropping system

  • 1.

    Ruisi, P. et al. Long-term effects of no tillage treatment on soil N availability, N uptake, and 15N-fertilizer recovery of durum wheat differ in relation to crop sequence. Field Crop. Res. 189, 51–58 (2016).

    Article  Google Scholar 

  • 2.

    Díaz-Zorita, M., Duarte, G. A. & Grove, J. H. A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil Tillage Res. 65, 1–18 (2002).

    Article  Google Scholar 

  • 3.

    Díaz-Zorita, M. Cambios en el uso de pesticidas y fertilizantes. Cienc. hoy 15, 28–29 (2005).

    Google Scholar 

  • 4.

    Iturri, L. A. & Buschiazzo, D. E. Light acidification in N-fertilized loess soils along a climosequence affected chemical and mineralogical properties in the short-term. CATENA 139, 92–98 (2016).

    CAS  Article  Google Scholar 

  • 5.

    Finck, A. Fertilizer and Fertilization. Basics and Instructions for Fertilizing Crops (FAO, Rome, 1979).

    Google Scholar 

  • 6.

    Smil, V. Nitrogen and food production: proteins for human diets. AMBIO A J. Hum. Environ. 31, 126–131 (2002).

    Article  Google Scholar 

  • 7.

    Rice, K. C. & Herman, J. S. Acidification of Earth: an assessment across mechanisms and scales. Appl. Geochem. 27, 1–14 (2012).

    CAS  Article  Google Scholar 

  • 8.

    Zhalnina, K. et al. Soil pH determines microbial diversity and composition in the park grass experiment. Microb. Ecol. 69, 395–406 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Kemmitt, S. J., Wright, D. & Jones, D. L. Soil acidification used as a management strategy to reduce nitrate losses from agricultural land. Soil Biol. Biochem. 37, 867–875 (2005).

    CAS  Article  Google Scholar 

  • 10.

    Zeng, J. et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016).

    CAS  Article  Google Scholar 

  • 11.

    Tian, D. & Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 10, 24019 (2015).

    Article  CAS  Google Scholar 

  • 12.

    Binkley, D. & Richter, D. Nutrient cycles and H+ budgets of forest ecosystems. In Advances in Ecological Research16 (eds MacFayden, A. & Ford, E. D.) 1–51 (Elsevier, Amsterdam, 1987).

    Google Scholar 

  • 13.

    Bowman, W. D., Cleveland, C. C., Halada, Ĺ, Hreško, J. & Baron, J. S. Negative impact of nitrogen deposition on soil buffering capacity. Nat. Geosci. 1, 767 (2008).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Chadwick, O. A. & Chorover, J. The chemistry of pedogenic thresholds. Geoderma 100, 767–770 (2001).

    Article  Google Scholar 

  • 15.

    Dubiková, M., Cambier, P., Šucha, V. & Čaplovic̆ová, M. Experimental soil acidification. Appl. Geochem. 17, 245–257 (2002).

    Article  Google Scholar 

  • 16.

    Watmough, S. A., Eimers, M. C. & Dillon, P. J. Manganese cycling in central Ontario forests: response to soil acidification. Appl. Geochem. 22, 1241–1247 (2007).

    CAS  Article  Google Scholar 

  • 17.

    Neves, N. R. et al. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: potential use in environmental risk assessment. Sci. Total Environ. 407, 3740–3745 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 18.

    Moir, J., Jordan, P., Moot, D. & Lucas, R. Phosphorus response and optimum pH ranges of twelve pasture legumes grown in an acid upland New Zealand soil under glasshouse conditions. J. Soil Sci. Plant Nutr. 16, 438–460 (2016).

    CAS  Google Scholar 

  • 19.

    Huang, Z. et al. Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability. New Phytol. 210, 431–442 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Tang, X. et al. Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil. Chemosphere 119, 177–183 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 21.

    Redel, Y. et al. Assessment of phosphorus status influenced by Al and Fe compounds in volcanic grassland soils. J. Soil Sci. Plant Nutr. 16, 490–506 (2016).

    CAS  Google Scholar 

  • 22.

    Mitran, T. & Mani, P. K. Effect of organic amendments on rice yield trend, phosphorus use efficiency, uptake, and apparent balance in soil under long-term rice-wheat rotation. J. Plant Nutr. 40, 1312–1322 (2017).

    CAS  Article  Google Scholar 

  • 23.

    Xin, X. et al. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crop. Res. 208, 27–33 (2017).

    Article  Google Scholar 

  • 24.

    Qaswar, M. et al. Partial substitution of chemical fertilizers with organic amendments increased rice yield by changing phosphorus fractions and improving phosphatase activities in fluvo-aquic soil. J. Soils Sediments 20, 1–12 (2019).

    Google Scholar 

  • 25.

    Ahmed, W. et al. Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of southern China. PLoS ONE 14, e0216881 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Simonsson, M. et al. Pools and solubility of soil phosphorus as affected by liming in long-term agricultural field experiments. Geoderma 315, 208–219 (2018).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Holland, J. E., White, P. J., Glendining, M. J., Goulding, K. W. T. & McGrath, S. P. Yield responses of arable crops to liming—an evaluation of relationships between yields and soil pH from a long-term liming experiment. Eur. J. Agron. 105, 176–188 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Weng, L., Vega, F. A. & Van Riemsdijk, W. H. Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling. Environ. Sci. Technol. 45, 8420–8428 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 29.

    Eriksson, A. K., Hesterberg, D., Klysubun, W. & Gustafsson, J. P. Phosphorus dynamics in Swedish agricultural soils as influenced by fertilization and mineralogical properties: insights gained from batch experiments and XANES spectroscopy. Sci. Total Environ. 566, 1410–1419 (2016).

    ADS  Article  CAS  PubMed  Google Scholar 

  • 30.

    Murrmann, R. P. & Peech, M. Effect of pH on labile and soluble phosphate in soils 1. Soil Sci. Soc. Am. J. 33, 205–210 (1969).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Veith, J. A. & Sposito, G. Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum oxide with o-phosphate: the formation of X-ray amorphous analogs of variscite and montebrasite 1. Soil Sci. Soc. Am. J. 41, 870–876 (1977).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Stevens, R. L. & Bayard, E. Clay mineralogy of agricultural soils (Ap horizon) in Västergötland, SW Sweden. GFF 116, 87–91 (1994).

    Article  Google Scholar 

  • 33.

    Cabrera, F., Madrid, L. & De Arambarri, P. Adsorption of phosphate by various oxides: theoretical treatment of the adsorption envelope. J. Soil Sci. 28, 306–313 (1977).

    CAS  Article  Google Scholar 

  • 34.

    Zhang, H., Bo-ren, W., Ming-gang, X. U. & Ting-lu, F. A. N. Crop yield and soil responses to long-term fertilization on a red soil in Southern China. Pedosph. Int. J. 19, 199–207 (2009).

    CAS  Article  Google Scholar 

  • 35.

    Cai, Z. et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J. Soils Sediments 15, 260–270 (2015).

    CAS  Article  Google Scholar 

  • 36.

    Qaswar, M. et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 198, 104569 (2020).

    Article  Google Scholar 

  • 37.

    Fang, Y. et al. Nitrogen deposition and forest nitrogen cycling along an urban–rural transect in southern China. Glob. Change Biol. 17, 872–885 (2011).

    ADS  Article  Google Scholar 

  • 38.

    Liu, L., Zhang, X., Wang, S., Zhang, W. & Lu, X. Bulk sulfur (S) deposition in China. Atmos. Environ. 135, 41–49 (2016).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Jia, Y. et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci. Rep. 4, 3763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    FAO. World Reference Base for Soil Resources 2014: International soil classification systems for naming soils and creating legends for soil maps (Updated 2015). World Soil Resources Reports No. 106 (2014).

  • 41.

    Baxter, S. World reference base for soil resources. Exp. Agric. 43, 264 (2007).

    Article  Google Scholar 

  • 42.

    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).

    Article  Google Scholar 

  • 43.

    Guo, Y. et al. Long-term grazing affects relationships between nitrogen form uptake and biomass of alpine meadow plants. Plant Ecol. 218, 1035–1045 (2017).

    Article  Google Scholar 

  • 44.

    Zhou, H. et al. Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Chin. Sci. Bull. 51, 320–327 (2006).

    Article  Google Scholar 

  • 45.

    Nelson, D. W. & Sommers, L. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 9, 539–579 (1982).

    Google Scholar 

  • 46.

    Pages, A. L., Miller, R. H. & Dennis, R. K. Methods of Soil Analysis. Part 2 Chemical Methods (Soil Science Society of America Inc., Madison, 1982).

    Google Scholar 

  • 47.

    Black, C. A. Methods of Soil Analysis Part II. Chemical and Microbiological Properties (American Society of Agriculture, St. Joseph, 1965).

    Google Scholar 

  • 48.

    Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1964).

    Article  Google Scholar 

  • 49.

    Knudsen, D., Peterson, G. A. & Pratt, P. F. Lithium, sodium, and potassium. In Methods of Soil Analysis. Part 2. Chemical and microbiological properties (ed. Norman, A. G.) 225–246 (American Society of Agronomy Soil Science Society of America, Madison, 1982).

    Google Scholar 

  • 50.

    Lu, R. K. Analytical Methods of Soil Agricultural Chemistry (China Agricultural Science and Technology Press, Beijing, 2000).

    Google Scholar 

  • 51.

    Pavinato, P. S., Rodrigues, M., Soltangheisi, A., Sartor, L. R. & Withers, P. J. A. Effects of cover crops and phosphorus sources on maize yield, phosphorus uptake, and phosphorus use efficiency. Agron. J. 109, 1039–1047 (2017).

    CAS  Article  Google Scholar 

  • 52.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Guo, J. H. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 54.

    Schroder, J. L. et al. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Sci. Soc. Am. J. 75, 957 (2011).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Chen, D., Lan, Z., Hu, S. & Bai, Y. Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification. Soil Biol. Biochem. 89, 99–108 (2015).

    CAS  Article  Google Scholar 

  • 56.

    Han, T. et al. The links between potassium availability and soil exchangeable calcium, magnesium, and aluminum are mediated by lime in acidic soil. J. Soils Sediments https://doi.org/10.1007/s11368-018-2145-6 (2018).

    Article  Google Scholar 

  • 57.

    Bouwman, A. F., Van Vuuren, D. P., Derwent, R. G. & Posch, M. A global analysis of acidification and eutrophication of terrestrial ecosystems. Water. Air Soil Pollut. 141, 349–382 (2002).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Tang, C. et al. Biological amelioration of subsoil acidity through managing nitrate uptake by wheat crops. Plant Soil 338, 383–397 (2011).

    CAS  Article  Google Scholar 

  • 59.

    Stevens, C. J., Dise, N. B. & Gowing, D. J. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates. Environ. Pollut. 157, 313–319 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 60.

    Haynes, R. J. Effects of liming on phosphate availability in acid soils. Plant Soil 68, 289–308 (1982).

    CAS  Article  Google Scholar 

  • 61.

    Nierop, K. G. J. J., Jansen, B. & Verstraten, J. M. Dissolved organic matter, aluminium and iron interactions: precipitation induced by metal/carbon ratio, pH and competition. Sci. Total Environ. 300, 201–211 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 62.

    Li, H. et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio 44, 274–285 (2015).

    CAS  Article  PubMed Central  Google Scholar 

  • 63.

    Smyth, T. J. & Sanchez, P. A. Effects of lime, silicate, and phosphorus applications to an oxisol on phosphorus sorption and ion retention. Soil Sci. Soc. Am. J. 44, 500–505 (1980).

    ADS  CAS  Article  Google Scholar 

  • 64.

    Curtin, D. & Syers, J. K. Lime-induced changes in indices of soil phosphate availability. Soil Sci. Soc. Am. J. 65, 147–152 (2001).

    ADS  CAS  Article  Google Scholar 

  • 65.

    Barth, V. P. et al. Stratification of soil chemical and microbial properties under no-till after liming. Appl. Soil Ecol. 130, 169–177 (2018).

    Article  Google Scholar 

  • 66.

    Abdi, D. et al. Residual effects of paper mill biosolids and liming materials on soil microbial biomass and community structure. Can. J. Soil Sci. 97, 188–199 (2016).

    Google Scholar 

  • 67.

    Park, J.-S. & Ro, H.-M. Early-stage changes in chemical phosphorus speciation induced by liming deforested soils. J. Soil Sci. Plant Nutr. 2, 435–447 (2018).

    Google Scholar 

  • 68.

    Malhi, S. S., Nyborg, M. & Harapiak, J. T. Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay. Soil Tillage Res. 48, 91–101 (1998).

    Article  Google Scholar 

  • 69.

    Kostic, L. et al. Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. Biol. Fertil. Soils 51, 289–298 (2015).

    CAS  Article  Google Scholar 

  • 70.

    Shahin, M., Esitken, A. & Pirlak, L. The effects of lime does on some morphological and fruit characteristics of some strawberry (Fragaria Xananssa Duch.) cultivars. In IX International Scientific Agriculture Symposium” AGROSYM 2018″, Jahorina, Bosnia and Herzegovina, 4–7 October 2018. Book of Proceedings 575–582 (University of East Sarajevo, Faculty of Agriculture, 2018).

  • 71.

    Rheinheimer, D. S., Tiecher, T., Gonzatto, R., Zafar, M. & Brunetto, G. Residual effect of surface-applied lime on soil acidity properties in a long-term experiment under no-till in a Southern Brazilian sandy Ultisol. Geoderma 313, 7–16 (2018).

    ADS  CAS  Article  Google Scholar 

  • 72.

    Goulding, K. W. T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 32, 390–399 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 73.

    Liu, X. Y., Rashti, M. R., Esfandbod, M., Powell, B. & Chen, C. R. Liming improves soil microbial growth, but trash blanket placement increases labile carbon and nitrogen availability in a sugarcane soil of subtropical Australia. Soil Res. 56, 235–243 (2018).

    Article  Google Scholar 

  • 74.

    Yadvinder-Singh, B.-S. & Timsina, J. Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Adv. Agron. 85, 269–407 (2005).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Researchers using environmental DNA must engage ethically with Indigenous communities

    Commercializing next-generation nuclear energy technology