in

The importance of common and the irrelevance of rare species for partition the variation of community matrix: implications for sampling and conservation

  • 1.

    Hutchinson, G. E. Homage to santa rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).

    Article  Google Scholar 

  • 2.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, Princeton, 2001).

    Google Scholar 

  • 3.

    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Article  Google Scholar 

  • 4.

    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, 2012).

    Google Scholar 

  • 5.

    Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8, 1175–1182 (2005).

    Article  PubMed  Google Scholar 

  • 6.

    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).

    Article  Google Scholar 

  • 7.

    Leibold, M. A. & Chase, J. M. Metacommunity Ecology (Princeton University Press, Princeton, 2018).

    Google Scholar 

  • 8.

    Grinnell, J. Field tests of theories concerning distributional control. Am. Nat. 51, 115–128 (1917).

    Article  Google Scholar 

  • 9.

    Elton, C. Competition and the structure of ecological communities. J. Anim. Ecol. 15, 54–68 (1946).

    Article  Google Scholar 

  • 10.

    Griffith, D. A. & Peres-Neto, P. R. Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses. Ecology 87, 2603–2613 (2006).

    Article  PubMed  Google Scholar 

  • 11.

    Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).

    Article  PubMed  Google Scholar 

  • 12.

    Oksanen, J. et al. Vegan: community ecology package. R package version 2.4–5. https://cran.r-project.org/web/packages/vegan/index.html (2017).

  • 13.

    Montag, L. F. A. et al. Contrasting associations between habitat conditions and stream aquatic biodiversity in a forest reserve and its surrounding area in the Eastern Amazon. Hydrobiologia 826, 263–277 (2019).

    CAS  Article  Google Scholar 

  • 14.

    Juen, L. & De Marco, P. Odonate biodiversity in terra-firme forest streamlets in Central Amazonia: On the relative effects of neutral and niche drivers at small geographical extents. Insect Conserv. Divers. 4, 265–274 (2011).

    Article  Google Scholar 

  • 15.

    Brasil, L. S. et al. Spatial, biogeographic and environmental predictors of diversity in Amazonian Zygoptera. Insect Conserv. Divers. 11, 174–184 (2018).

    Article  Google Scholar 

  • 16.

    Dambros, C. S., Morais, J. W., Azevedo, R. A. & Gotelli, N. J. Isolation by distance, not rivers, control the distribution of termite species in the Amazonian rain forest. Ecography 40, 1242–1250 (2017).

    Article  Google Scholar 

  • 17.

    Hepp, L. U., Landeiro, V. L. & Melo, A. S. Experimental assessment of the effects of environmental factors and longitudinal position on alpha and beta diversities of aquatic insects in a neotropical stream. Int. Rev. Hydrobiol. 97, 157–167 (2012).

    Article  Google Scholar 

  • 18.

    Siqueira, T. et al. Common and rare species respond to similar niche processes in macroinvertebratemetacommunities. Ecography 35, 183–192 (2012).

    Article  Google Scholar 

  • 19.

    Alahuhta, J. & Heino, J. Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. J. Biogeogr. 40, 1572–1582 (2013).

    Article  Google Scholar 

  • 20.

    Heino, J. & Alahuhta, J. Elements of regional beetle faunas: Faunal variation and compositional breakpoints along climate, land cover and geographical gradients. J. Anim. Ecol. 84, 427–441 (2015).

    Article  PubMed  Google Scholar 

  • 21.

    Algarte, V. M., Rodrigues, L., Landeiro, V. L., Siqueira, T. & Bini, L. M. Variance partitioning of deconstructed periphyton communities: Does the use of biological traits matter?. Hydrobiologia 722, 279–290 (2014).

    Article  Google Scholar 

  • 22.

    Brasil, L. S., Juen, L., Giehl, N. F. S. & Cabette, H. S. R. Effect of environmental and temporal factors on patterns of rarity of ephemeroptera in stream of the braziliancerrado. Neotrop. Entomol. 46, 29–35 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Gaston, K. J. Valuing common species. Science 327, 154–155 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 24.

    Gaston, K. J. The importance of being rare. Ecology 487, 46–47 (2012).

    CAS  Google Scholar 

  • 25.

    Lários, M. C. et al. Evidence of cross-taxon congruence in Neotropical wetlands: Importance of environmental and spatial factors. Glob. Ecol. Conserv. 12, 108–118 (2017).

    Article  Google Scholar 

  • 26.

    Juen, L. et al. Effects of oil palm plantations on the habitat structure and biota of streams in eastern Amazon. River Res. Appl. 32, 2081–2094 (2016).

    Article  Google Scholar 

  • 27.

    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).

    Article  Google Scholar 

  • 28.

    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, New York, 2018).

    Google Scholar 

  • 29.

    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 30.

    Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F., Bastos, R. P. & Pinto, M. P. Challenging Wallacean and Linnean shortfalls: Knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib. 12, 475–482 (2006).

    Article  Google Scholar 

  • 31.

    Whittaker, R. J. et al. Conservation biogeography: Assessment and prospect. Divers. Distrib. 11, 3–23 (2005).

    Article  Google Scholar 

  • 32.

    Crouzeilles, R., Feltran-Barbieri, R., Ferreira, M. S. & Strassburg, B. B. Hard times for the Brazilian environment. Nature ecology & evolution. 1, 1213–1213 (2017).

    Article  Google Scholar 

  • 33.

    Vieira, T. B. et al. A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities. PLoS ONE 13, 1–17 (2018).

    Google Scholar 

  • 34.

    Brasil, L. S. et al. Net primary productivity and seasonality of temperature and precipitation are predictors of the species richness of the Damselflies in the Amazon. Basic Appl. Ecol. 35, 45–53 (2019).

    Article  Google Scholar 

  • 35.

    Kéry, M. & Schmid, H. Monitoring programs need to take into account imperfect species detectability. Basic Appl. Ecol. 5, 65–73 (2004).

    Article  Google Scholar 

  • 36.

    Leitão, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B Biol. Sci. 2838, 20160084 (2016).

    Article  Google Scholar 

  • 37.

    Pereira, D. F. G., Oliveira-Junior, J. M. B. & Juen, L. Environmental changes promote larger species of Odonata (Insecta) in Amazonian streams. Ecol. Ind. 98, 179–192 (2019).

    Article  Google Scholar 

  • 38.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853 (2000).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Rodrigues, M. E. et al. Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biol. Conserv. 194, 113–120 (2016).

    Article  Google Scholar 

  • 40.

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439–473 (2007).

    ADS  Article  Google Scholar 

  • 41.

    Brasil, L. S. et al. Does the damming of streams in the southern Amazon basin affect dragonfly and damselfly assemblages (Odonata: Insecta)? A preliminary study. Int. J. Odonatol. 17, 187–197 (2014).

    Article  Google Scholar 

  • 42.

    Lencioni, F. A. A. The Damselflies of Brazil: An Illustrated Guide the Non Coenagrionidae Families (All Print Editora, São Paulo, 2005).

    Google Scholar 

  • 43.

    Lencioni, F. A. A. The Damselflies of Brazil: An Illustrated Guide—Coenagrionidae (All Print Editora, São Paulo, 2006).

    Google Scholar 

  • 44.

    Garrison, N. & Ellenrieder, J. A. L. Louton Damselfly Genera of the New World: An Illustrated and Annotated Key to the Zygoptera University Press (Johns Hopkins, Baltimore, 2010).

    Google Scholar 

  • 45.

    Frissell, C. R., Liss, W. J., Warren, C. E. & Hurley, M. D. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environ. Manag. 10, 199–214 (1986).

    ADS  Article  Google Scholar 

  • 46.

    Espírito-Santo, H. M. V., Magnusson, W. E., Zuanon, J., Mendonça, F. P. & Landeiro, V. L. Seasonal variation in the composition of fish assemblages in small Amazonian forest streams: Evidence for predictable changes. Freshw. Biol. 54, 536–548 (2009).

    Article  Google Scholar 

  • 47.

    Uieda, V. S. & Castro, R. M. C. Coleta e fixação de peixes de riachos: Ecologia de peixes de riacho (OecologiaAustralis, Rio de Janeiro, 1999).

    Google Scholar 

  • 48.

    Planquette, P., Keith, P. & Bail, P. Y. L. Atlas des poissons d’eau douce de Guyane (Service du patrimoine naturel, Paris, 1996).

    Google Scholar 

  • 49.

    Albert JS. Species Diversity and Phylogenetic Systematics of American Knifefishes (Gymnotiformes, Teleostei). (Miscellaneous Publications of the Museum of Zoology of the University of Michigan, Michigan, 2001).

  • 50.

    Kaufmann, P. R., Levine, P., Robison, E. G., Seeliger, C. & Peck, D. V. Quantifying Physical Habitat in Wadeable Streams (U.S. Environmental Protection Agency, Washington, 1999).

    Google Scholar 

  • 51.

    Peck, D. V. et al. Invironmental Monitoring and Assessment Program-Surface Waters: Western Pilot Study Field Operations Manual for Wadeable Streams (U.S. Environmental ProtectionAgency, Washington, 2006).

    Google Scholar 

  • 52.

    De Marco, P. & Nobrega, C. C. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE 13, 1–25 (2018).

    Google Scholar 

  • 53.

    Legendre, P. Spatial autocorrelation: Trouble or new paradigm?. Ecology 74, 1659–1673 (1993).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Researchers using environmental DNA must engage ethically with Indigenous communities

    Commercializing next-generation nuclear energy technology