in

Impairment of microbial and meiofaunal ecosystem functions linked to algal forest loss

  • 1.

    Halpern, B. J. et al. A global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168. https://doi.org/10.1126/science.1187512 (2010).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26(10), 541–549. https://doi.org/10.1016/j.tree.2011.06.011 (2011).

    Article  PubMed  Google Scholar 

  • 4.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).

    Article  Google Scholar 

  • 5.

    Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101. https://doi.org/10.1016/S0169-5347(02)00044-7 (2003).

    Article  Google Scholar 

  • 6.

    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386. https://doi.org/10.2307/3545850 (1994).

    Article  Google Scholar 

  • 7.

    Dubois, S., Retiere, C. & Olivier, F. Biodiversity associated with Sabellaria alveolata (Polychaeta: Sabellariidae) reefs: effects of human disturbances. J. Mar. Biol. Assoc. UK 82, 817–826. https://doi.org/10.1017/s0025315402006185 (2002).

    Article  Google Scholar 

  • 8.

    Gutierrez, J. L., Jones, C. G., Strayer, D. L. & Iribarne, O. O. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101(1), 79–90. https://doi.org/10.1034/j.1600-0706.2003.12322.x (2003).

    Article  Google Scholar 

  • 9.

    Bulleri, F. et al. The role of wave-exposure and human impacts in regulating the distribution of alternative habitats on NW Mediterranean rocky reefs. Estuar. Coast. Shelf Sci. 201, 114–122. https://doi.org/10.1016/j.ecss.2016.02.013 (2018).

    ADS  Article  Google Scholar 

  • 10.

    Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 153, 883–894. https://doi.org/10.1007/s00442-008-1043-9 (2008).

    ADS  Article  Google Scholar 

  • 11.

    Maggi, E., Bertocci, I., Vaselli, S. & Benedetti-Cecchi, L. Effects of changes in number, identity and abundance of habitat-forming species on assemblages of rocky seashores. Mar. Ecol. Prog. Ser. 381, 39–49. https://doi.org/10.3354/meps07949 (2009).

    ADS  Article  Google Scholar 

  • 12.

    Lemieux, J. & Cusson, M. Effects of habitat-forming species richness, evenness, identity, and abundance on benthic intertidal community establishment and productivity. PLoS ONE 9(10), e109261. https://doi.org/10.1371/journal.pone.0109261 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    De La Fuente, G. et al. The effect of Cystoseira canopy on the value of midlittoral habitats in NW Mediterranean, an emergy assessment. Ecol. Model. 404, 1–11. https://doi.org/10.1016/j.ecolmodel.2019.04.005 (2019).

    Article  Google Scholar 

  • 14.

    Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459. https://doi.org/10.1017/S0376892902000322 (2002).

    Article  Google Scholar 

  • 15.

    Mineur, F. et al. European seaweeds under pressure: consequences for communities and ecosystem functioning. J. Sea Res. 98, 91–108. https://doi.org/10.1016/j.seares.2014.11.004 (2015).

    ADS  Article  Google Scholar 

  • 16.

    Barredo, J. I., Caudullo, G. & Dosio, A. Mediterranean habitat loss under future climate conditions: assessing impacts on the Natura 2000 protected area network. Appl. Geogr. 75, 83–92. https://doi.org/10.1016/j.apgeog.2016.08.003 (2016).

    Article  Google Scholar 

  • 17.

    Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489. https://doi.org/10.1016/j.marpolbul.2005.06.014 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 18.

    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuar. Coast. Shelf Sci. 181, 196–208. https://doi.org/10.1016/j.ecss.2016.08.049 (2016).

    ADS  Article  Google Scholar 

  • 19.

    Thibaut, T. et al. Unexpected abundance and long-term relative stability of the brown alga Cystoseira amentacea, hitherto regarded as a threatened species, in the north-western Mediterranean Sea. Mar. Pollut. Bull. 89, 305–323. https://doi.org/10.1016/j.marpolbul.2014.09.043 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Thibaut, T. et al. Unexpected temporal stability of Cystoseira and Sargassum forests in Port-Cros, one of the oldest Mediterranean marine National Parks. Cryptogamie Algologie 37(1), 61–90. https://doi.org/10.7872/crya/v37.iss1.2016.61 (2016).

    Article  Google Scholar 

  • 21.

    Iveša, L., Djakovac, T. & Devescovi, M. Long-term fluctuations in Cystoseira populations along the west Istrian Coast (Croatia) related to eutrophication patterns in the northern Adriatic Sea. Mar. Pollut. Bull. 106, 162–173. https://doi.org/10.1016/j.marpolbul.2016.03.010 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The ups and downs of a canopy-forming seaweed over a span of more than one century. Sci. Rep. 9, 5250. https://doi.org/10.1038/s41598-019-41676-2 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Tamburello, L., Ravaglioli, C., Mori, G., Nuccio, C. & Bulleri, F. Enhanced nutrient loading and herbivory do not depress the resilience of subtidal canopy forests in Mediterranean oligotrophic waters. Mar. Environ. Res. 149, 7–17. https://doi.org/10.1016/j.marenvres.2019.05.015 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    EEC. 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L 206, 22/07/1992 p. 0007-0050.

  • 25.

    EC. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal L 327, 22/12/2000 p. 0001-0073.

  • 26.

    Orfanidis, S., Panayotidis, P. & Stamatis, N. An insight to the ecological evaluation index (EEI). Ecol. Indic. 3(1), 27–33. https://doi.org/10.1016/S1470-160X(03)00008-6 (2003).

    Article  Google Scholar 

  • 27.

    Ballesteros, E. et al. A new methodology based on littoral community cartography dominated by macroalgae for the implementation of the European Water Framework Directive. Mar. Pollut. Bull. 55(1), 172–180. https://doi.org/10.1016/j.marpolbul.2006.08.038 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Blanfuné, A. et al. The CARLIT method for the assessment of the ecological quality of European Mediterranean waters: relevance, robustness and possible improvements. Ecol. Indic. 72, 249–259. https://doi.org/10.1016/j.ecolind.2016.07.049 (2017).

    Article  Google Scholar 

  • 29.

    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742. https://doi.org/10.1038/ngeo2790 (2016).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Björk, M., Short, F., Mcleod, E. & Beer, S. Managing seagrasses for resilience to climate change (IUCN, Gland, 2008). ISBN: 978-2-8317-1089-1.

  • 31.

    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3(11), 961–968. https://doi.org/10.1038/NCLIMATE1970 (2013).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Gattuso, J. P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 1–18. https://doi.org/10.3389/fmars.2018.00337 (2018).

    Article  Google Scholar 

  • 33.

    Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. E. & Cebrian, E. Restoration of a canopy-forming alga based on recruitment enhancement: methods and long-term success assessment. Front. Plant Sci. 9, 1832. https://doi.org/10.3389/fpls.2018.01832 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Piazzi, L. & Ceccherelli, G. Effect of sea urchin human harvest in promoting canopy forming algae restoration. Estuar. Coast. Shelf Sci. 219, 273–277. https://doi.org/10.1016/j.ecss.2019.02.028 (2019).

    ADS  Article  Google Scholar 

  • 35.

    Tamburello, L. et al. Are we ready for scaling up restoration actions? An insight from Mediterranean macroalgal canopies. PLoS ONE 14(10), e0224477. https://doi.org/10.1371/journal.pone.0224477 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Bianchelli, S., Buschi, E., Danovaro, R. & Pusceddu, A. Biodiversity loss and turnover in alternative states in the Mediterranean Sea: a case study on meiofauna. Sci. Rep. 6, 34544. https://doi.org/10.1038/srep34544 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Ceccherelli, G. et al. Seagrass collapse due to synergistic stressors is not anticipated by phenological changes. Oecologia 186(4), 1137–1152. https://doi.org/10.1007/s00442-018-4075-9 (2018).

    ADS  Article  PubMed  Google Scholar 

  • 38.

    Ravaglioli, C. et al. Macro-grazer herbivory regulates seagrass response to pulse and press nutrient loading. Mar. Environ. Res. 136, 54–61. https://doi.org/10.1016/j.marenvres.2018.02.019 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 39.

    Thiriet, P. D. et al. Abundance and diversity of crypto-and necto-benthic coastal fish are higher in marine forests than in structurally less complex macroalgal assemblages. PLoS ONE 11(10), e0164121. https://doi.org/10.1371/journal.pone.0164121 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Melis, R., Ceccherelli, G., Piazzi, L. & Rustici, M. Macroalgal forests and sea urchin barrens: structural complexity loss, fisheries exploitation and catastrophic regime shifts. Ecol. Complex 37, 32–37. https://doi.org/10.1016/j.ecocom.2018.12.005 (2019).

    Article  Google Scholar 

  • 41.

    Grime, J. P. Biodiversity and ecosystem function: the debate deepens. Science 277, 1260–1261. https://doi.org/10.1126/science.277.5330.1260 (1997).

    CAS  Article  Google Scholar 

  • 42.

    Srivastava, D. S. & Vellend, M. Biodiversity-ecosystem function research: is it relevant to conservation?. Annu. Rev. Ecol. Evol. Syst. 36, 267–294. https://doi.org/10.1146/annurev.ecolsys.36.102003.152636 (2005).

    Article  Google Scholar 

  • 43.

    Montefalcone, M. et al. The exergy of a phase shift: ecosystem functioning loss in seagrass meadows of the Mediterranean Sea. Estuar. Coast. Shelf Sci. 156, 186–194. https://doi.org/10.1016/j.ecss.2014.12.001 (2015).

    ADS  Article  Google Scholar 

  • 44.

    Naeem, S. & Wright, J. P. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol. Lett. 6, 567–579. https://doi.org/10.1046/j.1461-0248.2003.00471.x (2003).

    Article  Google Scholar 

  • 45.

    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x (2006).

    Article  PubMed  Google Scholar 

  • 46.

    Mensens, C., De Laender, F., Janssen, C. R., Sabbe, K. & De Troch, M. Stressor induced biodiversity gradients: revisiting biodiversity-ecosystem functioning relationships. Oikos 124(6), 677–684. https://doi.org/10.1111/oik.01904 (2014).

    Article  Google Scholar 

  • 47.

    Danovaro, R. et al. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr. Biol. 18, 1–8. https://doi.org/10.1016/j.cub.2007.11.056 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    Pusceddu, A., Gambi, C., Corinaldesi, C., Scopa, M. & Danovaro, R. Relationships between meiofaunal biodiversity and prokaryotic heterotrophic production in different tropical habitats and oceanic regions. PLoS ONE 9(3), e91056. https://doi.org/10.1371/journal.pone.0091056 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Danovaro, R., Gambi, C. & Mirto, S. Meiofaunal production and energy transfer efficiency in a seagrass Posidonia oceanica bed in the western Mediterranean. Mar. Ecol. Prog. Ser. 234, 95–104. https://doi.org/10.3354/meps234095 (2002).

    ADS  Article  Google Scholar 

  • 50.

    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808. https://doi.org/10.1126/science.1064088 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 51.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75(1), 3–35. https://doi.org/10.1890/04-0922 (2005).

    Article  Google Scholar 

  • 52.

    Danovaro, R. Methods for the Study of Deep-Sea Sediments, Their Functioning and Biodiversity 1–428 (CRC Press, Boca Raton, 2009).

    Google Scholar 

  • 53.

    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. U.S.A. 106(52), 22341–22345. https://doi.org/10.1073/pnas.0907529106 (2009).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Pinna, S. et al. Macroalgal forest vs sea urchin barren: patterns of macro-zoobenthic diversity in a large-scale Mediterranean study. Mar. Environ. Res. 159, 104955. https://doi.org/10.1016/j.marenvres.2020.104955 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–736. https://doi.org/10.1038/368734a0 (1994).

    ADS  Article  Google Scholar 

  • 56.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845. https://doi.org/10.1126/science.1060391 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 57.

    Worm, B. et al. Impact of biodiversity loss on ocean ecosystem services. Science 314, 787–790. https://doi.org/10.1126/science.1132294 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 58.

    Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992. https://doi.org/10.1038/nature05202 (2006).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Loreau, M. Biodiversity and Ecosystem Functioning: the mystery of the deep sea. Curr. Biol. 18, 126–128. https://doi.org/10.1016/j.cub.2007.11.060 (2008).

    CAS  Article  Google Scholar 

  • 60.

    Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9(4), e1000606. https://doi.org/10.1371/journal.pbio.1000606 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Coll, M. et al. The Biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5(8), e11842. https://doi.org/10.1371/journal.pone.0011842 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Watzin, M. C. The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communities. Oecologia 59, 163–166. https://doi.org/10.1007/BF00378833 (1983).

    ADS  Article  PubMed  Google Scholar 

  • 63.

    Montagna, P. A. In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. Mar. Ecol. Prog. Ser. 18, 119–130 (1984).

    ADS  Article  Google Scholar 

  • 64.

    De Morais, L. T. & Bodiou, J. Y. Predation on meiofauna by juvenile fish in a western Mediterranean flatfish nursery ground. Mar. Biol. 82, 209–215. https://doi.org/10.1007/BF00394104 (1984).

    Article  Google Scholar 

  • 65.

    Heip, C., Vincx, M. & Vranken, G. The ecology of marine nematodes. Oceanogr. Mar. Biol. Annu. Rev. 23, 399–489 (1985).

    Google Scholar 

  • 66.

    Danovaro, R. et al. The potential impact of meiofauna on the recruitment of macrobenthos in a subtidal coastal benthic community of the Ligurian Sea: a field result. In Biology and Ecology of Shallow Coastal Waters (eds Eleftheriou, A. et al.) 115–122 (Olsen and Olsen, Fredensborg, 1995).

    Google Scholar 

  • 67.

    Maggi, E., Puccinelli, E. & Benedetti-Cecchi, L. Ecological feedback mechanisms and variable disturbance regimes: the uncertain future of Mediterranean macroalgal forests. Mar. Environ. Res. 140, 342–357. https://doi.org/10.1016/j.marenvres.2018.07.002 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 68.

    Rindi, L., Dal Bello, M., Dai, L., Gore, J. & Benedetti-Cecchi, L. Direct observation of increasing recovery length before collapse of a marine benthic ecosystem. Nat. Ecol. Evol. 1(6), 0153. https://doi.org/10.1038/s41559-017-0153 (2017).

    Article  Google Scholar 

  • 69.

    Carugati, L. et al. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep. 8, 13298. https://doi.org/10.1038/s41598-018-31683-0 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Ling, S. D., Kriegisch, N., Woolley, B. & Reeves, S. E. Density-dependent feedbacks, hysteresis, and demography of overgrazing sea urchins. Ecology 100(2), 02577. https://doi.org/10.1002/ecy.2577 (2019).

    Article  Google Scholar 

  • 71.

    Ramírez, F., Coll, M., Navarro, J., Bustamante, J. & Green, A. J. Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts. Sci. Rep. 8, 14871. https://doi.org/10.1038/s41598-018-33237-w (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    De Groot, R. S. et al. Benefits of investing in ecosystem restoration. Conserv. Biol. 27(6), 1286–1293. https://doi.org/10.1111/cobi.12158 (2013).

    Article  Google Scholar 

  • 73.

    Susini, M. L., Mangialajo, L., Thibaut, T. & Meinesz, A. Development of a transplantation technique of Cystoseiraamentacea var. stricta and Cystoseiracompressa. Hydrobiologia 580, 241–244. https://doi.org/10.1007/s10750-006-0449-9 (2007).

    Article  Google Scholar 

  • 74.

    Danovaro, R. & Fraschetti, S. Meiofaunal vertical zonation on hard-bottoms: comparison with soft-bottom meiofauna. Mar. Ecol. Prog. Ser. 230, 159–169. https://doi.org/10.3354/meps230159 (2002).

    ADS  Article  Google Scholar 

  • 75.

    Hoppe, H. G. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) of bacteria. In Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 423–431 (Lewis, Boca Raton, 1993).

    Google Scholar 

  • 76.

    Pusceddu, A., Dell’Anno, A., Fabiano, M. & Danovaro, R. Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Mar. Ecol. Prog. Ser. 375, 41–52. https://doi.org/10.3354/meps07735 (2009).

    ADS  CAS  Article  Google Scholar 

  • 77.

    Corinaldesi, C. et al. High diversity of benthic bacterial and archaeal assemblages in deep-Mediterranean canyons and adjacent slopes. Prog. Oceanogr. 171, 154–161. https://doi.org/10.1016/j.pocean.2018.12.014 (2019).

    ADS  Article  Google Scholar 

  • 78.

    Anderson, M. J. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58, 626–639. https://doi.org/10.1139/f01-004 (2001).

    Article  Google Scholar 

  • 79.

    Clarke, K. R. & Gorley, R. N. PRIMER V6: User Manual/Tutorial (PRIMER-E, Plymouth, 2006).

    Google Scholar 

  • 80.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response rations in experimental ecology. Ecology 80, 1150–1156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 (1999).

    Article  Google Scholar 

  • 81.

    Claudet, J. & Fraschetti, S. Human-driven impacts on marine habitats: a regional meta-analysis in the Mediterranean Sea. Biol. Conserv. 143, 2195–2206. https://doi.org/10.1016/j.biocon.2010.06.004 (2010).

    Article  Google Scholar 

  • 82.

    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525. https://doi.org/10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 (2003).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Negative to positive shifts in diversity effects on soil nitrogen over time

    Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal