in

Multi-year incubation experiments boost confidence in model projections of long-term soil carbon dynamics

  • 1.

    Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).

    ADS  Article  Google Scholar 

  • 2.

    Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Wieder, W. R. et al. Explicitly representing soil microbial processes in Earth system models. Glob. Biogeochem. Cycles 29, 1782–1800 (2015).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Li, J., Wang, G., Allison, S., Mayes, M. & Luo, Y. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry 119, 67–84 (2014).

    Article  Google Scholar 

  • 6.

    Luo, Y. Q. et al. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycles 30, 40–56 (2016).

    ADS  CAS  Article  Google Scholar 

  • 7.

    German, D. P., Marcelo, K. R. B., Stone, M. M. & Allison, S. D. The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Glob. Change Biol. 18, 1468–1479 (2012).

    ADS  Article  Google Scholar 

  • 8.

    Wang, G. S., Post, W. M. & Mayes, M. A. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecol. Appl. 23, 255–272 (2013).

    PubMed  Article  Google Scholar 

  • 9.

    Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. & Pacala, S. W. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat. Clim. Change 4, 1099–1102 (2014).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Wang, G. S. et al. Microbial dormancy improves development and experimental validation of ecosystem model. ISME J. 9, 226–237 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Georgiou K., Abramoff R. Z., Harte J., Riley W. J. & Torn M. S. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat. Commun. 8, 1223 (2017).

  • 13.

    Geyer, K. M., Dijkstra, P., Sinsabaugh, R. & Frey, S. D. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biol. Biochem. 128, 79–88 (2019).

    CAS  Article  Google Scholar 

  • 14.

    Chenu C., Rumpel C. & Lehmann J. in Soil Microbiology, Ecology and Biochemistry 4th edn (ed Paul E. A.) Ch. 13 (Academic Press, 2015).

  • 15.

    Jagadamma, S., Mayes, M. A., Steinweg, J. M. & Schaeffer, S. M. Substrate quality alters the microbial mineralization of added substrate and soil organic carbon. Biogeosciences 11, 4665–4678 (2014).

    ADS  Article  CAS  Google Scholar 

  • 16.

    Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F. & Six, J. Soil carbon saturation: Implications for measurable carbon pool dynamics in long-term incubations. Soil Biol. Biochem. 41, 357–366 (2009).

    CAS  Article  Google Scholar 

  • 17.

    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–8 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 18.

    Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Change 4, 903–906 (2014).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Li, J. et al. Reduced carbon use efficiency and increased microbial turnover with soil warming. Glob. Change Biol. 25, 900–910 (2019).

    ADS  Article  Google Scholar 

  • 20.

    Geyer, K. M., Kyker-Snowman, E., Grandy, A. S. & Frey, S. D. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188 (2016).

    CAS  Article  Google Scholar 

  • 21.

    Sinsabaugh, R. L., Moorhead, D. L., Xu, X. & Litvak, M. E. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytol. 214, 1518–1526 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Ye, J. S., Bradford, M. A., Dacal, M., Maestre, F. T. & Garca-Palacios, P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob. Change Biol. 25, 3354–3364 (2019).

    ADS  Article  Google Scholar 

  • 23.

    Xu, X. et al. Global pattern and controls of soil microbial metabolic quotient. Ecol. Monogr. 87, 429–441 (2017).

    Article  Google Scholar 

  • 24.

    Ye, J.-S., Bradford, M. A., Maestre, F. T., Li, F.-M. & García-Palacios, P. Compensatory thermal adaptation of soil microbial respiration rates in global croplands. Glob. Biogeochem. Cycles 34, e2019GB006507 (2020).

    ADS  CAS  Google Scholar 

  • 25.

    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

    CAS  Article  Google Scholar 

  • 26.

    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Manzoni, S. et al. Optimal metabolic regulation along resource stoichiometry gradients. Ecol. Lett. 20, 1182–1191 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).

    ADS  Article  Google Scholar 

  • 29.

    Abramoff, R. Z., Torn, M. S., Georgiou, K., Tang, J. & Riley, W. J. Soil organic matter temperature sensitivity cannot be directly inferred from spatial gradients. Glob. Biogeochem. Cycles 33, 761–776 (2019).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Colores, G. M., Schmidt, S. K. & Fisk, M. C. Estimating the biomass of microbial functional groups using rates of growth-related soil respiration. Soil Biol. Biochem. 28, 1569–1577 (1996).

    CAS  Article  Google Scholar 

  • 31.

    Van de Werf, H. & Verstraete, W. Estimation of active soil microbial biomass by mathematical analysis of respiration curves: calibration of the test procedure. Soil Biol. Biochem. 19, 261–265 (1987).

    Article  Google Scholar 

  • 32.

    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Schnecker, J., Bowles, T., Hobbie, E. A., Smith, R. G. & Grandy, A. S. Substrate quality and concentration control decomposition and microbial strategies in a model soil system. Biogeochemistry 144, 47–59 (2019).

    CAS  Article  Google Scholar 

  • 34.

    Kluber, A. et al. Soil Respiration and Microbial Biomass from Soil Incubations with 13C Labeled Additions. (Oak Ridge National Laboratory, TES SFA, US Department of Energy, Oak Ridge, Tennessee, USA, 2020).

  • 35.

    Wang, G. S. et al. Soil moisture drives microbial controls on carbon decomposition in two subtropical forests. Soil Biol. Biochem. 130, 185–194 (2019).

    CAS  Article  Google Scholar 

  • 36.

    Wang, K. F. et al. Modeling global soil carbon and soil microbial carbon by integrating microbial processes into the ecosystem process model TRIPLEX-GHG. J. Adv. Model Earth Syst. 9, 2368–2384 (2017).

    ADS  Article  Google Scholar 

  • 37.

    He, Y. J. et al. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests. J. Geophys. Res. Biogeosci. 120, 2596–2611 (2015).

    CAS  Article  Google Scholar 

  • 38.

    Beare, M. H., Neely, C. L., Coleman, D. C. & Hargrove, W. L. Characterization of a substrate-induced respiration method for measuring fungal, bacterial and total microbial biomass on plant residues. Agric. Ecosyst. Environ. 34, 65–73 (1991).

    Article  Google Scholar 

  • 39.

    Stenström, J., Svensson, K. & Johansson, M. Reversible transition between active and dormant microbial states in soil. FEMS Microbiol. Ecol. 36, 93–104 (2001).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Kaprelyants, A. S., Gottschal, J. C. & Kell, D. B. Dormancy in non-sporulating bacteria. FEMS Microbiol. Rev. 10, 271–285 (1993).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Frey, S. D., Drijber, R., Smith, H. & Melillo, J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 40, 2904–2907 (2008).

    CAS  Article  Google Scholar 

  • 42.

    Canham, C. D. W., Cole, J. & Lauenroth, W. K. Models In Ecosystem Science (Princeton University Press, 2003).

  • 43.

    Vereecken, H. et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 15, 1–57 (2016).

  • 44.

    Fuhrer, T., Fischer, E. & Sauer, U. Experimental identification and quantification of glucose metabolism in seven bacterial species. J. Bacteriol. 187, 1581–1590 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Fontaine, S. et al. Mechanisms of the priming effect in a savannah soil amended with cellulose. Soil Sci. Soc. Am. J. 68, 125–131 (2004).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Sinsabaugh, R. L. et al. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 86, 172–189 (2016).

    Article  Google Scholar 

  • 47.

    Wang, G. S., Mayes, M. A., Gu, L. H. & Schadt, C. W. Representation of dormant and active microbial dynamics for ecosystem modeling. PLoS ONE 9, e89252 (2014).

  • 48.

    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 49.

    Hartley, I. P., Heinemeyer, A. & Ineson, P. Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response. Glob. Change Biol. 13, 1761–1770 (2007).

    ADS  Article  Google Scholar 

  • 50.

    Knorr, W., Prentice, I. C., House, J. I. & Holland, E. A. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Luo, Y. Q. et al. Ecological forecasting and data assimilation in a data-rich era. Ecol. Appl. 21, 1429–1442 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Melillo, J. M., Steudler, P. A., Mohan, J. E. Prospect Hill soil warming experiment at Harvard Forest since 1991. Harvard Forest Data Archive HF005-05 Harvard Forest, Petersham, MA http://harvardforestfasharvardedu 8080 (1999).

  • 54.

    Zhou, J. Z. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2012).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Ye, J.-S., Bradford, M. A., Maestre, F. T., Li, F.-M. & García-Palacios, P. Compensatory thermal adaptation of soil microbial respiration rates in global croplands. Glob. Biogeochem. Cycles 34, e2019GB006507 (2020).

  • 56.

    Wang, G. S. & Chen, S. L. A review on parameterization and uncertainty in modeling greenhouse gas emissions from soil. Geoderma 170, 206–216 (2012).

    ADS  CAS  Article  Google Scholar 

  • 57.

    R Development Core Team. R: A language and environment for statistical computing (R Foundation for Statitical Computing, Vienna, Austria, 2019).

  • 58.

    Batstone, D. J., Pind, P. F. & Angelidaki, I. Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate. Biotechnol. Bioeng. 84, 195–204 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Wang, G. S., Barber, M. E., Chen, S. L. & Wu, J. Q. SWAT modeling with uncertainty and cluster analyses of tillage impacts on hydrological processes. Stoch. Environ. Res. Risk Assess. 28, 225–238 (2014).

    Article  Google Scholar 

  • 60.

    Sulman, B. N. et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry 141, 109–123 (2018).

    CAS  Article  Google Scholar 

  • 61.

    Abramoff, R. et al. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry 137, 51–71 (2018).

    Article  Google Scholar 

  • 62.

    Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    van Gestel, N. et al. Predicting soil carbon loss with warming reply. Nature 554, E7–E8 (2018).

    Article  CAS  Google Scholar 

  • 64.

    Jian, S. Y. et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biol. Biochem. 101, 32–43 (2016).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Negative to positive shifts in diversity effects on soil nitrogen over time

    Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal