Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).
Hahn, S., Bauer, S. & Liechti, F. The natural link between Europe and Africa–2.1 billion birds on migration. Oikos 118, 624–626 (2009).
Gill, R. E. Jr et al. Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc. R. Soc. B Biol. Sci. 276, 447–457 (2008).
Kempenaers, B. & Valcu, M. Breeding site sampling across the Arctic by individual males of a polygynous shorebird. Nature 541, 528 (2017).
Dingle, H. & Drake, V. A. What is migration? Bioscience 57, 113–121 (2007).
Faaborg, J. et al. Recent advances in understanding migration systems of New World land birds. Ecol. Monogr. 80, 3–48 (2010).
Berthold, P. Bird migration: a general survey. (Oxford University Press on Demand, 2001).
Dingle, H. The biology of life on the move. (New York, NY: Oxford University Press, 2014).
Rappole, J. H. The Avian Migrant: The Biology of Bird Migration. (Columbia University Press, 2013).
Pulido, F. The genetics and evolution of avian migration. BioScience 57, 165–174 (2007).
Berthold, P., Gwinner, E. & Sonnenschein, E. Avian Migration. (Springer Science & Business Media, 2013).
Bearhop, S. et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502–504 (2005).
Sutherland, W. J. Evidence for flexibility and constraint in migration systems. J. Avian Biol. 29, 441–446 (1998).
Piersma, T. & van Gils, J. A.. The Flexible Phenotype: A Body-Centred Integration of Ecology, Physiology, and Behaviour. (Oxford University Press, 2011).
Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224 (2019).
Stearns, S. C. The evolution of life histories. (Oxford University Press, London, 1992).
Roff, D. Evolution Of Life Histories: Theory and Analysis. (Springer Science & Business Media, 1993).
Boyle, W. A. & Conway, C. J. Why migrate? A test of the evolutionary precursor hypothesis. Am. Nat. 169, 344–359 (2007).
Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).
Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: resource availability and movement patterns in neotropical landbirds. Am. Nat. 140, 447–476 (1992).
Kokko, H. & Lundberg, P. Dispersal, migration, and offspring retention in saturated habitats. Am. Nat. 157, 188–202 (2001).
Altizer, S., Bartel, R. & Han, B. A. Animal migration and infectious disease risk. Science 331, 296–302 (2011).
Sillett, T. S. & Holmes, R. T. Variation in survivorship of a migratory songbird throughout its annual cycle. J. Anim. Ecol. 71, 296–308 (2002).
Klaassen, R. H. G. et al. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J. Anim. Ecol. 83, 176–184 (2016).
Lindström, Å. Finch flock size and risk of hawk predation at a migratory stopover site. Auk Ornithol. Adv. 106, 225–232 (1989).
Conklin, J. R., Senner, N. R., Battley, P. F. & Piersma, T. Extreme migration and the individual quality spectrum. J. Avian Biol. 48, 19–36 (2017).
Böhning-Gaese, K., Halbe, B., Lemoine, N. & Oberrath, R. Factors influencing the clutch size, number of broods and annual fecundity of North American and European land birds. Evol. Ecol. Res. 2, 823–839 (2000).
Jetz, W., Sekercioglu, C. H. & Böhning-Gaese, K. The worldwide variation in avian clutch size across species and space. PLOS Biol. 6, e303 (2008).
Ricklefs, R. E. & Wikelski, M. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462–468 (2002).
Peters, P. H. Ecological Implication of Body Size. (Cambridge Studies in Ecology). (Cambridge University Press, cambridge, 1983).
Schmidt-Nielsen, K. & Knut, S.-N. Scaling: Why is Animal Size So Important? (Cambridge University Press, 1984).
Hedenström, A. Scaling migration speed in animals that run, swim and fly. J. Zool. 259, 155–160 (2003).
Hedenström Anders. Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos. Trans. R. Soc. B Biol. Sci. 363, 287–299 (2008).
Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).
Teitelbaum, C. S. et al. How far to go? Determinants of migration distance in land mammals. Ecol. Lett. 18, 545–552 (2015).
Watanabe, Y. Y. Flight mode affects allometry of migration range in birds. Ecol. Lett. 19, 907–914 (2016).
Newton, I. The migration ecology of birds. (Academic Press: Oxford, 2008).
Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).
Alexander, R. M. C. N. When is migration worthwhile for animals that walk, swim or fly? J. Avian Biol. 29, 387–394 (1998).
Klaassen, M. Metabolic constraints on long-distance migration in birds. J. Exp. Biol. 199, 57–64 (1996).
Klaassen, M. & Lindström, Å. Departure fuel loads in time-minimizing migating birds can be explained by the energy costs of being heavy. J. Theor. Biol. 183, 29–34 (1996).
Lindström, Å. Fuel deposition rates in migrating birds: causes, constraints and consequences. in Avian Migration (eds Berthold, P., Gwinner, E. & Sonnenschein, E.) 307–320 (Springer, 2003).
Newton, I. Weather-related mass-mortality events in migrants. Ibis 149, 453–467 (2007).
Gylfe, Å., Bergström, S., Lundstróm, J. & Olsen, B. Reactivation of Borrelia infection in birds. Nature 403, 724 (2000).
Walter, H. Eleonora’s Falcon: Adaptations to Prey and Habitat in a Social Raptor. (University of Chicago Press, 1979).
Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24, 664–674 (2015).
Dalby, L., McGill, B. J., Fox, A. D. & Svenning, J.-C. Seasonality drives global-scale diversity patterns in waterfowl (Anseriformes) via temporal niche exploitation. Glob. Ecol. Biogeogr. 23, 550–562 (2014).
Able, K. P. & Belthoff, J. R. Rapid ‘evolution’ of migratory behaviour in the introduced house finch of eastern North America. Proc. R. Soc. Lond. B Biol. Sci. 265, 2063–2071 (1998).
Pérez-Tris, J. & Tellería, J. L. Migratory and sedentary blackcaps in sympatric non-breeding grounds: implications for the evolution of avian migration. J. Anim. Ecol. 71, 211–224 (2002).
Chapman, B. B., Brönmark, C., Nilsson, J.-Å. & Hansson, L.-A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).
Fogarty, M. J., Sissenwine, M. P. & Cohen, E. B. Recruitment variability and the dynamics of exploited marine populations. Trends Ecol. Evol. 6, 241–246 (1991).
Forcada, J., Trathan, P. N. & Murphy, E. J. Life history buffering in Antarctic mammals and birds against changing patterns of climate and environmental variation. Glob. Change Biol. 14, 2473–2488 (2008).
Winger, B. M. & Pegan, T. M. The evolution of seasonal migration and the slow-fast continuum of life history in birds. bioRxiv 2020.06.27.175539 (2020), https://doi.org/10.1101/2020.06.27.175539.
Martin, T. E. Nest predation and nest sites. BioScience 43, 523–532 (1993).
Hurlbert, A. H. & Haskell, J. P. The effect of energy and seasonality on avian species richness and community composition. Am. Nat. 161, 83–97 (2003).
Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).
Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188 (2008).
van Gils, J. A. et al. Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 352, 819–821 (2016).
Wikelski, M. & Tertitski, G. Living sentinels for climate change effects. Science 352, 775–776 (2016).
Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109–3109 (2015).
Eyres, A., Böhning-Gaese, K. & Fritz, S. A. Quantification of climatic niches in birds: adding the temporal dimension. J. Avian Biol. 48, 1517–1531 (2017).
Gnanadesikan, G. E., Pearse, W. D. & Shaw, A. K. Evolution of mammalian migrations for refuge, breeding, and food. Ecol. Evol. 7, 5891–5900 (2017).
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 217–223 (2014), https://doi.org/10.1111/j.2041-210X.2011.00169.x@10.1111/(ISSN)2041-210X.TOPMETHODS.
Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).
Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B Biol. Sci. 281, 20140298 (2014).
Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).
Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877 (1999).
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33 (2010).
Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).
Source: Ecology - nature.com