Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).
Volterra, V. Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci. 3, 3–51 (1928).
MacArthur, R. & Levins, R. Competition, habitat selection, and character displacement in a patchy environment. Proc. Natl. Acad. Sci. USA. 51, 1207–1210 (1964).
Levin, S. A. Community equilibria and stability, and an extension of the competitive exclusion principle. Am. Nat. 104, 413–423 (1970).
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Chase, J. M. et al. The interaction between predation and competition: a review and synthesis. Ecol. Lett. 5, 302–315 (2002).
Amarasekare, P. Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6, 1109–1122 (2003).
Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).
Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
Armstrong, R. A. & McGehee, R. Competitive exclusion. Am. Nat. 115, 151–170 (1980).
Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).
Abrams, P. A. & Holt, R. D. The impact of consumer–resource cycles on the coexistence of competing consumers. Theor. Popul. Biol. 62, 281–295 (2002).
Schwartz, M. D. et al. Phenology: An Integrative Environmental Science (Kluwer Academic Publishers, New York, 2003).
McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N. & Fisk, A. T. Food web structure in temporally-forced ecosystems. Trends Ecol. Evol. 30, 662–672 (2015).
White, E. R. & Hastings, A. Seasonality in Ecology: Progress and Prospects in Theory (Springer, New York, 2018).
Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 22, 1324–1338 (2019).
Stewart, F. M. & Levin, B. R. Partitioning of resources and the outcome of interspecific competition: a model and some general considerations. Am. Nat. 107, 171–198 (1973).
Abrams, P. Variability in resource consumption rates and the coexistence of competing species. Theor. Popul. Biol. 25, 106–124 (1984).
Cushing, J. M. Periodic two-predator, one-prey interactions and the time sharing of a resource niche. SIAM J. Appl. Math. 44, 392–410 (1984).
Grover, J. P. Resource competition in a variable environment: phytoplankton growing according to Monod’s model. Am. Nat. 136, 771–789 (1990).
Loreau, M. Time scale of resource dynamics and coexistence through time partitioning. Theor. Popul. Biol. 41, 401–412 (1992).
Namba, T. & Takahashi, S. Competitive coexistence in a seasonally fluctuating environment II. Multiple stable states and invasion success. Theor. Popul. Biol. 44, 374–402 (1993).
Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).
Abrams, P. A. When does periodic variation in resource growth allow robust coexistence of competing consumer species?. Ecology 85, 372–382 (2004).
Gravel, D., Guichard, F. & Hochberg, M. E. Species coexistence in a variable world. Ecol. Lett. 14, 828–839 (2011).
Sakavara, A., Tsirtsis, G., Roelke, D. L., Mancy, R. & Spatharis, S. Lumpy species coexistence arises robustly in fluctuating resource environments. Proc. Natl. Acad. Sci. USA. 115, 738–743 (2018).
Dunlap, J. C., Loros, J. J. & DeCoursey, P. J. Chronobiology: Biological Timekeeping (Sinauer Associates, London, 2004).
Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).
Kronfeld-Schor, N. et al. Chronobiology by moonlight. Proc. R. Soc. Lond. B 280, 20123088 (2013).
Welch, K. D. & Harwood, J. D. Temporal dynamics of natural enemy-pest interactions in a changing environment. Biol. Control 75, 18–27 (2014).
Raible, F., Takekata, H. & Tessmar-Raible, K. An overview of monthly rhythms and clocks. Front. Neurol. 8, 189 (2017).
Körtner, G. & Geiser, F. The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol. Int. 17, 103–128 (2000).
Holt, R. D. & Polis, G. A. A theoretical framework for intraguild predation. Am. Nat. 149, 745–764 (1997).
Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).
Connell, J. H. Some mechanisms producing structure in natural communities: a model and evidence from field experiments. Ecol. Evol. Commun. 1, 460–490 (1975).
Cozzi, G. et al. Fear of the dark or dinner by moonlight? Reduced temporal partitioning among africa’s large carnivores. Ecology 93, 2590–2599 (2012).
Campera, M. et al. Temporal niche separation between the two ecologically similar nocturnal Primates Avahi meridionalis and Lepilemur fleuretae. Behav. Ecol. Sociobiol. 73, 1–10 (2019).
Leonard, J. P., Tewes, M. E., Lombardi, J. V., Wester, D. W. & Campbell, T. A. Effects of sun angle, lunar illumination, and diurnal temperature on temporal movement rates of sympatric ocelots and bobcats in South Texas. PLoS ONE 15, e0231732 (2020).
Shimadzu, H., Dornelas, M., Henderson, P. A. & Magurran, A. E. Diversity is maintained by seasonal variation in species abundance. BMC Biol. 11, 98 (2013).
Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol. Rev. 88, 912–927 (2013).
Lovegrove, B. G. et al. Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change?. Physiol. Biochem. Zool. 87, 30–45 (2014).
Yerushalmi, S. & Green, R. M. Evidence for the adaptive significance of circadian rhythms. Ecol. Lett. 12, 970–981 (2009).
Bradshaw, W. E. & Holzapfel, C. M. Genetic response to rapid climate change: it’s seasonal timing that matters. Mol. Ecol. 17, 157–166 (2008).
Sauve, D., Divoky, G. & Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct. Ecol. 33, 2180–2190 (2019).
Abbey-Lee, R. N. & Dingemanse, N. J. Adaptive individual variation in phenological responses to perceived predation levels. Nat. Commun. 10, 1601 (2019).
Source: Ecology - nature.com