in

Polyrhythmic foraging and competitive coexistence

  • 1.

    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).

    Article  Google Scholar 

  • 2.

    Volterra, V. Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci. 3, 3–51 (1928).

    Article  Google Scholar 

  • 3.

    MacArthur, R. & Levins, R. Competition, habitat selection, and character displacement in a patchy environment. Proc. Natl. Acad. Sci. USA. 51, 1207–1210 (1964).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Levin, S. A. Community equilibria and stability, and an extension of the competitive exclusion principle. Am. Nat. 104, 413–423 (1970).

    Article  Google Scholar 

  • 5.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  • 6.

    Chase, J. M. et al. The interaction between predation and competition: a review and synthesis. Ecol. Lett. 5, 302–315 (2002).

    Article  Google Scholar 

  • 7.

    Amarasekare, P. Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6, 1109–1122 (2003).

    Article  Google Scholar 

  • 8.

    Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).

    Article  Google Scholar 

  • 9.

    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Armstrong, R. A. & McGehee, R. Competitive exclusion. Am. Nat. 115, 151–170 (1980).

    MathSciNet  Article  Google Scholar 

  • 11.

    Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).

    ADS  Article  Google Scholar 

  • 12.

    Abrams, P. A. & Holt, R. D. The impact of consumer–resource cycles on the coexistence of competing consumers. Theor. Popul. Biol. 62, 281–295 (2002).

    PubMed  MATH  Article  Google Scholar 

  • 13.

    Schwartz, M. D. et al. Phenology: An Integrative Environmental Science (Kluwer Academic Publishers, New York, 2003).

    Google Scholar 

  • 14.

    McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N. & Fisk, A. T. Food web structure in temporally-forced ecosystems. Trends Ecol. Evol. 30, 662–672 (2015).

    PubMed  Article  Google Scholar 

  • 15.

    White, E. R. & Hastings, A. Seasonality in Ecology: Progress and Prospects in Theory (Springer, New York, 2018).

    Google Scholar 

  • 16.

    Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 22, 1324–1338 (2019).

    PubMed  Google Scholar 

  • 17.

    Stewart, F. M. & Levin, B. R. Partitioning of resources and the outcome of interspecific competition: a model and some general considerations. Am. Nat. 107, 171–198 (1973).

    Article  Google Scholar 

  • 18.

    Abrams, P. Variability in resource consumption rates and the coexistence of competing species. Theor. Popul. Biol. 25, 106–124 (1984).

    MATH  Article  Google Scholar 

  • 19.

    Cushing, J. M. Periodic two-predator, one-prey interactions and the time sharing of a resource niche. SIAM J. Appl. Math. 44, 392–410 (1984).

    MathSciNet  MATH  Article  Google Scholar 

  • 20.

    Grover, J. P. Resource competition in a variable environment: phytoplankton growing according to Monod’s model. Am. Nat. 136, 771–789 (1990).

    Article  Google Scholar 

  • 21.

    Loreau, M. Time scale of resource dynamics and coexistence through time partitioning. Theor. Popul. Biol. 41, 401–412 (1992).

    MATH  Article  Google Scholar 

  • 22.

    Namba, T. & Takahashi, S. Competitive coexistence in a seasonally fluctuating environment II. Multiple stable states and invasion success. Theor. Popul. Biol. 44, 374–402 (1993).

    MathSciNet  MATH  Article  Google Scholar 

  • 23.

    Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).

    MATH  Article  Google Scholar 

  • 24.

    Abrams, P. A. When does periodic variation in resource growth allow robust coexistence of competing consumer species?. Ecology 85, 372–382 (2004).

    Article  Google Scholar 

  • 25.

    Gravel, D., Guichard, F. & Hochberg, M. E. Species coexistence in a variable world. Ecol. Lett. 14, 828–839 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Sakavara, A., Tsirtsis, G., Roelke, D. L., Mancy, R. & Spatharis, S. Lumpy species coexistence arises robustly in fluctuating resource environments. Proc. Natl. Acad. Sci. USA. 115, 738–743 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Dunlap, J. C., Loros, J. J. & DeCoursey, P. J. Chronobiology: Biological Timekeeping (Sinauer Associates, London, 2004).

    Google Scholar 

  • 28.

    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).

    Article  Google Scholar 

  • 29.

    Kronfeld-Schor, N. et al. Chronobiology by moonlight. Proc. R. Soc. Lond. B 280, 20123088 (2013).

    Google Scholar 

  • 30.

    Welch, K. D. & Harwood, J. D. Temporal dynamics of natural enemy-pest interactions in a changing environment. Biol. Control 75, 18–27 (2014).

    Article  Google Scholar 

  • 31.

    Raible, F., Takekata, H. & Tessmar-Raible, K. An overview of monthly rhythms and clocks. Front. Neurol. 8, 189 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Körtner, G. & Geiser, F. The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol. Int. 17, 103–128 (2000).

    PubMed  Article  Google Scholar 

  • 33.

    Holt, R. D. & Polis, G. A. A theoretical framework for intraguild predation. Am. Nat. 149, 745–764 (1997).

    Article  Google Scholar 

  • 34.

    Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).

    MathSciNet  CAS  PubMed  Article  Google Scholar 

  • 35.

    Connell, J. H. Some mechanisms producing structure in natural communities: a model and evidence from field experiments. Ecol. Evol. Commun. 1, 460–490 (1975).

    Google Scholar 

  • 36.

    Cozzi, G. et al. Fear of the dark or dinner by moonlight? Reduced temporal partitioning among africa’s large carnivores. Ecology 93, 2590–2599 (2012).

    PubMed  Article  Google Scholar 

  • 37.

    Campera, M. et al. Temporal niche separation between the two ecologically similar nocturnal Primates Avahi meridionalis and Lepilemur fleuretae. Behav. Ecol. Sociobiol. 73, 1–10 (2019).

    Article  Google Scholar 

  • 38.

    Leonard, J. P., Tewes, M. E., Lombardi, J. V., Wester, D. W. & Campbell, T. A. Effects of sun angle, lunar illumination, and diurnal temperature on temporal movement rates of sympatric ocelots and bobcats in South Texas. PLoS ONE 15, e0231732 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Shimadzu, H., Dornelas, M., Henderson, P. A. & Magurran, A. E. Diversity is maintained by seasonal variation in species abundance. BMC Biol. 11, 98 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol. Rev. 88, 912–927 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Lovegrove, B. G. et al. Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change?. Physiol. Biochem. Zool. 87, 30–45 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Yerushalmi, S. & Green, R. M. Evidence for the adaptive significance of circadian rhythms. Ecol. Lett. 12, 970–981 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Bradshaw, W. E. & Holzapfel, C. M. Genetic response to rapid climate change: it’s seasonal timing that matters. Mol. Ecol. 17, 157–166 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Sauve, D., Divoky, G. & Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct. Ecol. 33, 2180–2190 (2019).

    Article  Google Scholar 

  • 45.

    Abbey-Lee, R. N. & Dingemanse, N. J. Adaptive individual variation in phenological responses to perceived predation levels. Nat. Commun. 10, 1601 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Massive, swift federal investment needed to address climate change, panelists say

    Cracking the secrets of an emerging branch of physics