in

Plant health status effects on arbuscular mycorrhizal fungi associated with Lavandula angustifolia and Lavandula intermedia infected by Phytoplasma in France

  • 1.

    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn. (Academic Press, London, 2008).

    Google Scholar 

  • 2.

    Gianinazzi, S. et al. Agroecology: the key role of arbuscularmycorrhizas in ecosystem services. Mycorrhiza 20, 519–530 (2010).

    Article  Google Scholar 

  • 3.

    Lenoir, I., Fontaine, J. & Sahraoui, A. L. H. Arbuscularmycorrhizal fungal responses to abiotic stresses: a review. Phytochem 123, 4–15 (2016).

    CAS  Article  Google Scholar 

  • 4.

    Song, Y., Chen, D., Lu, K., Sun, Z. & Zeng, R. Enhanced tomato disease resistance primed by arbuscularmycorrhizal fungus. Front. Plant Sci. 6, 786 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Van Geel, M. et al. Abiotic rather than biotic filtering shapes the arbuscularmycorrhizal fungal communities of European seminatural grasslands. New Phytol. 220, 1262–1272 (2018).

    Article  Google Scholar 

  • 6.

    Varma, A., Prasad, R. & Tuteja, N. Mycorrhiza—Nutrient Uptake (Biocontrol, Ecorestoration Fourth Edition, Springer, 2017).

    Google Scholar 

  • 7.

    Yu, L., Nicolaisen, J., Larsen, J. & Ravnskov, S. Molecular characterization of root-associated fungal communities in relation to health status of Pisum sativum using barcoded pyrosequencing. Plant Soil 357, 395–405 (2012).

    CAS  Article  Google Scholar 

  • 8.

    Corredor, A. H., Van Rees, K. & Vujanovic, V. Host genotype and health status influence on the composition of the arbuscularmycorrhizal fungi in Salix bioenergy plantations. For. Ecol. Manag. 314, 112–119 (2014).

    Article  Google Scholar 

  • 9.

    Martinez, N. & Johnson, N. C. Agricultural management influences propagule densities and functioning of arbuscularmycorrhizas in low- and high-input agroecosystems in arid environments. Appl. Soil Ecol. 46, 300–306 (2010).

    Article  Google Scholar 

  • 10.

    Hontoria, C., García-González, I., Quemada, M., Roldánd, A. & Alguacil, M. M. The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation. Sci. Total Environ. 660, 913–922 (2019).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Lumini, E., Vallino, M., Alguacil, M. M., Romani, M. & Bianciotto, V. Different farming and water regimes in Italian rice fields affect arbuscularmycorrhizal fungal soil communities. Ecol. Appl. 21, 1696–1707 (2011).

    Article  Google Scholar 

  • 12.

    Manoharan, L., Rosenstock, N. P., Williams, A. & Hedlund, K. Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity. Appl. Soil Ecol. 115, 53–59 (2017).

    Article  Google Scholar 

  • 13.

    Dai, M., Bainard, L. D., Hamel, C., Gan, Y. & Lynch, D. Impact of land use on arbuscularmycorrhizal fungal communities in rural Canada. Appl. Environ. Microbiol. 79, 6719–6729 (2013).

    CAS  Article  Google Scholar 

  • 14.

    Aghili, F. et al. Wheat plants invest more in mycorrhizae and receive more benefits from them under adverse than favorable soil conditions. Appl. Soil Ecol. 84, 93–111 (2014).

    Article  Google Scholar 

  • 15.

    Gaudin, J., Semetey, O., Foissac, X. & Eveillard, S. Phytoplasmatiter in diseased lavender is not correlated to lavender tolerance to stolburphytoplasma. Bull. Insectol. 64(Supplement), S179–S180 (2011).

    Google Scholar 

  • 16.

    Kamińska, M., Klamkowski, K., Berniak, H. & Treder, W. Effect of arbuscularmycorrhizal fungi inoculation on aster yellows phytoplasma-infected tobacco plants. Sci. Hortic. 125, 500–503 (2010).

    Article  Google Scholar 

  • 17.

    Batlle, A. et al. Tolerance increase to Candidatus phytoplasma prunorum in mycorrhizal plums fruit trees. Bull. Insectol. 64, 125–126 (2011).

    Google Scholar 

  • 18.

    D’ameli, R. et al. Increased plant tolerance against chrysanthemum yellows phytoplasma (Candidatus Phytoplasma asteris) following double inoculation with Glomusmosseae BEG12 and Pseudomonas putida S1Pf1Rif. Plant. Pathol. 60, 1014–1022 (2011).

    Article  Google Scholar 

  • 19.

    Fiorilli, V. et al. Omics approaches revealed how arbuscularmycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Sci. Rep. 8, 9625 (2018).

    ADS  Article  Google Scholar 

  • 20.

    Bødker, L., Kjøller, R., Kristensen, K. & Rosendahl, S. Interactions between indigenous arbuscularmycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12, 7–12 (2002).

    Article  Google Scholar 

  • 21.

    Al-Askar, A. A. & Rashad, Y. M. Arbuscularmycorrhizal fungi: a biocontrol agent against common bean Fusarium root rot disease. Plant Pathol. J. 9, 31–38 (2010).

    Article  Google Scholar 

  • 22.

    Hugoni, M., Luis, P., Guyonnet, J. & Haichar, F. Z. Plant host habitat and root exudates shape fungal diversity. Mycorrhiza 28, 451–463 (2018).

    Article  Google Scholar 

  • 23.

    Bertaccini, A. & Duduk, B. Phytoplasma and phytoplasma diseases: A review of recent research. Phytopathol. Mediterr. 48, 355–378 (2009).

    CAS  Google Scholar 

  • 24.

    Stierlin, E., Nicolè, F., Costes, T., Fernandez, X. & Michel, T. Metabolomic study of volatile compounds emitted by lavender grown under open-field conditions: a potential approach to investigate the yellow decline disease. Metabolomics 16, 31 (2020).

    CAS  Article  Google Scholar 

  • 25.

    Lopez-Garcia, A. et al. Plant traits determine the phylogenetic structure of arbuscularmycorrhizal fungal communities. Mol. Ecol. 26, 6948–6959 (2017).

    Article  Google Scholar 

  • 26.

    Alguacil, M. M., Díaz, G., Torres, P., Rodríguez-Caballero, G. & Roldan, A. Host identity and functional traits determine the community composition of the arbuscularmycorrhizal fungi in facultative epiphytic plant species. Fungal Ecol. 39, 307–315 (2019).

    Article  Google Scholar 

  • 27.

    Neuenkamp, L. et al. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscularmycorrhizal fungal communities. New Phytol. 220, 1236–1247 (2018).

    CAS  Article  Google Scholar 

  • 28.

    Alguacil, M. M., Torrecillas, E., García-Orenes, F. C. & Roldán, A. Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biol. Biochem. 76, 34–44 (2014).

    CAS  Article  Google Scholar 

  • 29.

    Giri, B. & Mukerji, K. G. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14, 307–312 (2004).

    Article  Google Scholar 

  • 30.

    Phillips, J. M. & Hayman, D. S. Improved procedure for clearing roots and staining parasitic and vesicular–arbuscularmycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–163 (1970).

    Article  Google Scholar 

  • 31.

    Trouvelot, A., Kough, J. L. & Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes ayant une signification fonctionnelle. In Physiological and genetical aspects of mycorrhizae (eds Gianinazzi-Pearson, V. & Gianinazzi, S.) 217–221 (INRA Press, Paris, 1986).

    Google Scholar 

  • 32.

    Gollotte, A., van Tuinen, D. & Atkinson, D. Diversity of arbuscularmycorrhizalfungicolonisingroots of the grassspeciesAgrostis capillaris and Lolium perenne in a fieldexperiment. Mycorrhiza 14, 111–117 (2004).

    Article  Google Scholar 

  • 33.

    Binet, M. N. et al. Responses of above- and below-ground fungal symbionts to cessation of mowing in subalpine grassland. Fungal Ecol. 25, 14–21 (2017).

    Article  Google Scholar 

  • 34.

    Mouhamadou, B. et al. Effects of two grass species on the composition of soil fungal communities. Biol. Fertil. Soils 49, 1131–1139 (2013).

    Article  Google Scholar 

  • 35.

    Boyer, F. et al. Obitools: a unix- inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).

    CAS  Article  Google Scholar 

  • 36.

    Lentendu, G. et al. Assessment of soil fungal diversity in different alpine tundra habitats by means of pyrosequencing. Fungal Div. 49, 113–123 (2011).

    Article  Google Scholar 

  • 37.

    van Dongen, S. Graph clustering by flow simulation. Ph.D. thesis, University of Utrecht (2000).

  • 38.

    Thompson, L. A. S-PLUS (and R) manual to accompany Agresti’s Categorical Data Analysis (2002), 2nd ed (2009).

  • 39.

    Oksanen, J., Kindt, R., Legendre, P., O’Hara, B. & Gavin, L. vegan: Community Ecology Package. R package version 1.15–4 (2009).

  • 40.

    Mouhamadou, B. et al. Molecular screening of xerophilic Aspergillus strains producing mycophenolic acid. Fungal Biol. 121, 103–111 (2017).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Massive, swift federal investment needed to address climate change, panelists say

    Cracking the secrets of an emerging branch of physics