in

A holistic approach in herbicide resistance research and management: from resistance detection to sustainable weed control

  • 1.

    Keeley, P. E., Carter, C. H. & Thullen, R. J. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35, 199–204 (1987).

    Article  Google Scholar 

  • 2.

    Christoffers, M. J. Genetic aspects of herbicide-resistant weed management. Weed Technol. 13, 647–652 (1999).

    Article  Google Scholar 

  • 3.

    Gressel, J. Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Manage. Sci. 67, 253–257 (2011).

    CAS  Article  Google Scholar 

  • 4.

    Dominguez-Valenzuela, J. A. et al. First confirmation and characterization of target and non-target site resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) from Mexico. Plant Physiol. Biochem. 115, 212–218 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Gaines, T. A. et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc. Natl. Acad. Sci. 107, 1029–1034 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Kaundun, S. S. et al. Evolution of target-site resistance to glyphosate in an Amaranthus palmeri population from Argentina and its expression at different plant growth temperatures. Plants 8, 512 (2019).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 7.

    Lacoste, M. & Powles, S. Beyond modelling: considering user-centred and post-development aspects to ensure the success of a decision support system. Comput. Electron. Agric. 121, 260–268 (2016).

    Article  Google Scholar 

  • 8.

    Culpepper, A., Whitaker, J., MacRae, A. & York, A. Distribution of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. J. Cotton Sci. 12, 306–310 (2008).

    Google Scholar 

  • 9.

    Patzoldt, W. L., Tranel, P. J. & Hager, A. G. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53, 30–36 (2005).

    CAS  Article  Google Scholar 

  • 10.

    Kaundun, S., Hutchings, S. J., Dale, R., Bailly, G. & Glanfield, P. Syngenta ‘RISQ’ test: a novel in-season method for detecting resistance to post-emergence ACCase and ALS inhibitor herbicides in grass weeds. Weed Res. 51, 284–293 (2011).

    Article  Google Scholar 

  • 11.

    Koger, C. H. et al. Assessment of two nondestructive assays for detecting glyphosate resistance in horseweed (Conyza canadensis). Weed Sci. 53, 559–566 (2005).

    CAS  Article  Google Scholar 

  • 12.

    Norsworthy, J. K., Scott, R. C., Smith, K. L. & Oliver, L. R. Response of Northeastern Arkansas Palmer amaranth (Amaranthus palmeri) accessions to glyphosate. Weed Technol. 22, 408–413 (2008).

    CAS  Article  Google Scholar 

  • 13.

    Mithila, J., Hall, J. C., Johnson, W. G., Kelley, K. B. & Riechers, D. E. Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 59, 445–457 (2011).

    CAS  Article  Google Scholar 

  • 14.

    Spaunhorst, D. J. Utilization of dicamba for the control of glyphosate-resistant giant ragweed (Ambrosia trifida L.) and waterhemp (Amaranthus rudis Sauer.) Masters thesis, University of Missouri-Columbia, (2013).

  • 15.

    Steckel, L. E., Craig, C. C. & Hayes, R. M. Glyphosate-resistant horseweed (Conyza canadensis) control with glufosinate prior to planting no-till cotton (Gossypium hirsutum). Weed Technol. 20, 1047–1051 (2006).

    CAS  Article  Google Scholar 

  • 16.

    Lindsay, K. et al. PAM: decision support for long-term Palmer amaranth (Amaranthus palmeri) control. Weed Technol. 31, 915–927 (2017).

    Article  Google Scholar 

  • 17.

    Neve, P., Norsworthy, J. K., Smith, K. L. & Zelaya, I. A. Modelling evolution and management of glyphosate resistance in Amaranthus palmeri. Weed Res. 51, 99–112 (2011).

    Article  Google Scholar 

  • 18.

    Mohseni-Moghadam, M., Schroeder, J. & Ashigh, J. Mechanism of resistance and inheritance in glyphosate resistant Palmer amaranth (Amaranthus palmeri) populations from New Mexico, USA. Weed Sci. 61, 517–525 (2013).

    CAS  Article  Google Scholar 

  • 19.

    Singh, S., Singh, V., Lawton-Rauh, A., Bagavathiannan, M. V. & Roma-Burgos, N. EPSPS gene amplification primarily confers glyphosate resistance among Arkansas Palmer amaranth (Amaranthus palmeri) populations. Weed Sci. 66, 293–300 (2018).

    Article  Google Scholar 

  • 20.

    Beres, Z. T. et al. Target-site EPSPS Pro-106-Ser mutation in Conyza canadensis biotypes with extreme resistance to glyphosate in Ohio and Iowa, USA. Sci. Rep. 10, 7577. https://doi.org/10.1038/s41598-020-64458-7 (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Palma-Bautista, C. et al. Reduced absorption and impaired translocation endows glyphosate resistance in Amaranthus palmeri harvested in glyphosate-resistant soybean from Argentina. J. Agric. Food Chem. 67, 1052–1060 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Brunharo, C. A. D. C. G., Morran, S., Martin, K., Moretti, M. L. & Hanson, B. D. EPSPS duplication and mutation involved in glyphosate resistance in the allotetraploid weed species Poa annua L.. Pest Manage. Sci. 75, 1663–1670. https://doi.org/10.1002/ps.5284 (2019).

    CAS  Article  Google Scholar 

  • 23.

    Chen, J. et al. Glyphosate resistance in Eleusine indica: EPSPS overexpression and P106A mutation evolved in the same individuals. Pestic. Biochem. Physiol. 164, 203–208. https://doi.org/10.1016/j.pestbp.2020.01.014 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Kaundun, S. S. An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non-target-site mechanism (s) confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population. Pest Manage. Sci. 66, 1249–1256 (2010).

    CAS  Article  Google Scholar 

  • 25.

    Lu, H., Yu, Q., Han, H., Owen, M. J. & Powles, S. B. Metribuzin resistance in a wild radish (Raphanus raphanistrum) population via both psbA gene mutation and enhanced metabolism. J. Agric. Food Chem. 67, 1353–1359 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Perotti, V. E. et al. A novel triple amino acid substitution in the EPSPS found in a high-level glyphosate-resistant Amaranthus hybridus population from Argentina. Pest Manage. Sci. 75, 1242–1251 (2019).

    CAS  Article  Google Scholar 

  • 27.

    Heap, I. & Duke, S. O. Overview of glyphosate-resistant weeds worldwide. Pest Manage. Sci. 74, 1040–1049 (2018).

    CAS  Article  Google Scholar 

  • 28.

    Koo, D.-H. et al. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proc. Natl. Acad. Sci. 115, 3332–3337 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Gaines, T. A., Patterson, E. L. & Neve, P. Molecular mechanisms of adaptive evolution revealed by global selection for glyphosate resistance. New Phytol. 223, 1770–1775 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Gressel, J. Perspective: present pesticide discovery paradigms promote the evolution of resistance—learn from nature and prioritize multi-target site inhibitor design. Pest Manage. Sci. 76, 421–425. https://doi.org/10.1002/ps.5649 (2020).

    CAS  Article  Google Scholar 

  • 31.

    Liu, C. et al. A generalised individual-based algorithm for modelling the evolution of quantitative herbicide resistance in arable weed populations. Pest Manage. Sci. 73, 462–474 (2017).

    CAS  Article  Google Scholar 

  • 32.

    Ashworth, M. B., Walsh, M. J., Flower, K. C., Vila-Aiub, M. M. & Powles, S. B. Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (Wild radish). Evol. Appl. 9, 619–629 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Bagavathiannan, M. V. & Davis, A. S. An ecological perspective on managing weeds during the great selection for herbicide resistance. Pest Manage. Sci. 74, 2277–2286 (2018).

    CAS  Article  Google Scholar 

  • 34.

    Booth, B. D. & Swanton, C. J. Assembly theory applied to weed communities. Weed Sci. 50, 2–13 (2002).

    CAS  Article  Google Scholar 

  • 35.

    Délye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).

    PubMed  Article  CAS  Google Scholar 

  • 36.

    Heap, I. The International Herbicide-Resistant Weed Database (accessed 29 May 2020). www.weedscience.org.

  • 37.

    Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. Evolution on ecological time-scales. Funct. Ecol. 21, 387–393 (2007).

    Article  Google Scholar 

  • 38.

    Neve, P. Gene drive systems: do they have a place in agricultural weed management?. Pest Manage. Sci. 74, 2671–2679 (2018).

    CAS  Article  Google Scholar 

  • 39.

    Partel, V., Charan Kakarla, S. & Ampatzidis, Y. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput. Electron. Agric. 157, 339–350 (2019).

    Article  Google Scholar 

  • 40.

    Singh, V. et al. Chapter three—unmanned aircraft systems for precision weed detection and management: prospects and challenges. In Advances in Agronomy (ed. Sparks, D. L.) 93–134 (Academic Press, Cambridge, 2020).

    Google Scholar 

  • 41.

    Walsh, M. J. et al. Opportunities and challenges for harvest weed seed control in global cropping systems. Pest Manage. Sci. 74, 2235–2245 (2018).

    CAS  Article  Google Scholar 

  • 42.

    Daszak, P. et al. Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc. Natl. Acad. Sci. 110, 3681–3688 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Phillipson, J. & Symes, D. Science for sustainable fisheries management: an interdisciplinary approach. Fish. Res. 139, 61–64 (2013).

    Article  Google Scholar 

  • 44.

    Shaman, J., Solomon, S., Colwell, R. R. & Field, C. B. Fostering advances in interdisciplinary climate science. Proc. Natl. Acad. Sci. 110, 3653–3656 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Storch, I. et al. Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi-scale approach. Ecol. Evol. 10, 1489–1509 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Totsche, K. U. et al. Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci. 173, 88–99 (2010).

    CAS  Article  Google Scholar 

  • 47.

    Grimm, V. et al. CREAM: a European project on mechanistic effect models for ecological risk assessment of chemicals. Environ. Sci. Pollut. Res. 16, 614–617 (2009).

    Article  Google Scholar 

  • 48.

    Cousens, R. D. A question of logic: experiments cannot prove lack of an herbicide-resistance fitness penalty. Weed Sci. 68, 197–198. https://doi.org/10.1017/wsc.2020.24 (2020).

    Article  Google Scholar 

  • 49.

    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    PubMed  Article  Google Scholar 

  • 50.

    Wilensky, U. NetLogo. (accessed 20 May 2020). http://ccl.northwestern.edu/netlogo/ (1999).

  • 51.

    Patzoldt, W. L., Hager, A. G., McCormick, J. S. & Tranel, P. J. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl. Acad. Sci. U.S.A. 103, 12329–12334 (2006).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Rangani, G. et al. A novel single-site mutation in the catalytic domain of protoporphyrinogen oxidase IX (PPO) confers resistance to PPO-inhibiting herbicides. Front. Plant Sci. 10, 568. https://doi.org/10.3389/fpls.2019.00568 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Salas, R. A. et al. Resistance to PPO-inhibiting herbicide in Palmer amaranth from Arkansas. Pest Manage. Sci. 72, 864–869 (2016).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Interactions between coral propagules in aquarium and field conditions

    Population viability in a host-parasitoid system is mediated by interactions between population stage structure and life stage differential susceptibility to toxicants