in

Bromalites from the Upper Triassic Polzberg section (Austria); insights into trophic interactions and food chains of the Polzberg palaeobiota

  • 1.

    Hunt, A. P. Late Pennsylvanian coprolites fromthe Kinney Brick Quarry, central New Mexico with notes on the classification and utility of coprolites. Bull. New Mex. Bur. Min. Mineral Resour. 138, 221–229 (1992).

    Google Scholar 

  • 2.

    Hunt, A. P., Chin, K. & Lockley, M. In The palaeobiology of vertebrate coprolites (ed. Donovan, S.) 221–240 (Wiley, New York, 1994).

    Google Scholar 

  • 3.

    Northwood, C. Early Triassic coprolites from Australia and their palaeobiological significance. Palaeontology 48, 49–68 (2005).

    Article  Google Scholar 

  • 4.

    Zatoń, M. et al. Coprolites of Late Triassic carnivorous vertebrates from Poland: an integrative approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 430, 21–46 (2015).

    Article  Google Scholar 

  • 5.

    Salamon, M. A., Niedźwiedzki, R., Gorzelak, P., Lach, R. & Surmik, D. Bromalites from the Middle Triassic of Poland and the rise of the Mesozoic Marine Revolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 321–322, 142–150. https://doi.org/10.1016/j.palaeo.2012.01.029 (2012).

    Article  Google Scholar 

  • 6.

    Niedźwiedzki, G., Bajdek, P., Owocki, K. & Kear, B. P. An Early Triassic polar predator ecosystem revealed by vertebrate coprolites from the Bulgo Sandstone (Sydney Basin) of southeastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 464, 5–15. https://doi.org/10.1016/j.palaeo.2016.04.003 (2016).

    Article  Google Scholar 

  • 7.

    Hansen, B. B. et al. Coprolites from the Late Triassic Kap Stewart Formation, Jameson Land, East Greenland: morphology, classification and prey inclusions. Geol. Soc. Lond. Spec. Publ. 434, 49–69. https://doi.org/10.1144/SP434.12 (2016).

    ADS  Article  Google Scholar 

  • 8.

    Brachaniec, T. et al. Coprolites of marine vertebrate predators from the Lower Triassic of southern Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 118–126. https://doi.org/10.1016/j.palaeo.2015.06.005 (2015).

    Article  Google Scholar 

  • 9.

    Umamaheswaran, R., Prasad, G. V. R., Rudra, A. & Dutta, S. Investigation of Biomarkers in Triassic Coprolites from India, 1–1 (2019).

  • 10.

    Chrząstek, A. & Niedźwiedzki, R. Kręgowce retu i dolnego wapienia muszlowego na Śląsku. Prace geologiczno-mineralogiczne LXIV. Acta Universitatis Wratislaviensis, 69–81 (in Polish) (1998).

  • 11.

    Glaessner, M. F. Eine Crustaceen fauna aus den Lunzer Schichten Niederösterreichs. Jahrbuch Geologische Bundesanstalt Wien 81, 467–486 (1931).

    Google Scholar 

  • 12.

    Stur, D. Neue Aufschlüsse im Lunzer Sandsteine bei Lunz und ein neuer Fundort von Wengerschiefer im Pölzberg zwischen Lunzersee und Gaming. Verhandlungen der kaiserlich königlichen Geologischen Reichsanstalt 1, 271–273 (1874).

    Google Scholar 

  • 13.

    Seilacher, A. Begriff und Bedeutung der Fossil-Lagerstätten (Concept and meaning of fossil lagerstätten). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 1970, 34–39 (1970).

    Google Scholar 

  • 14.

    Krystyn, L. Die Fossillagerstätten der alpinen Trias. (eds. D. Nagel & G. Rabeder) 23–78 (Österreichische Paläontologische Gesellschaft Wien, 1991).

  • 15.

    Forchielli, A. & Pervesler, P. Phosphatic cuticle in thylacocephalans: a taphonomic case study of (Arthropoda, Thylacocephala) from the Fossil-Lagerstätte Polzberg (Reingraben shales, Carnian, Upper Triassic, Lower Austria). Aust. J. Earth Sci. 106, 46–61 (2013).

    Google Scholar 

  • 16.

    Teller, F. Über den Schädel eines fossilen Dipnoers, Ceratodus Sturii nov. spec aus den Schichten der oberen Trias der Nordalpen. Abhandlungen der kaiserlich königlichen Geologischen Reichsanstalt 15, 1–2 (1981).

    Google Scholar 

  • 17.

    Griffith, J. The Upper Triassic fishes from Polzberg bei Lunz. Zool. J. Linnaean Soc. 60, 1–93 (1977).

    Article  Google Scholar 

  • 18.

    Doguzhaeva, L. A., Mapes, R. H., Summesberger, H. & Mutvei, H. In The Preservation of Body Tissues, Shell, and Mandibles in the Ceratitid Ammonoid Austrotrachyceras (Late Triassic), Austria (eds Landman, H. N. et al.) 221–237 (Springer, New York, 2007).

    Google Scholar 

  • 19.

    Doguzhaeva, L. A., Summesberger, H., Mutvei, H. & Brandstaetter, F. The mantle, ink sac, ink, arm hooks and soft body debris associated with the shells in Late Triassic coleoid cephalopod Phragmoteuthis from the Austrian Alps. Palaeoworld 16, 272–284 (2007).

    Article  Google Scholar 

  • 20.

    Doguzhaeva, L. A. & Summesberger, H. Pro-ostraca of Triassic belemnoids (Cephalopoda) from Northern Calcareous Alps, with observations on their mode of preservation in an environment of northern Tethys which allowed for carbonization of non-biomineralized structures. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 266, 31–38 (2012).

    Article  Google Scholar 

  • 21.

    Austromap Online 2020. Bundesamt für Eich- und Vermessungswesen, Wien. https://www.austrianmap.at/amap/index.php?SKN=1andXPX=637andYPX=492 (accessed 5 Feb 2020).

  • 22.

    Wagreich, M., Pervesler, P., Khatun, M., Wimmer-Frey, I. & Scholger, R. Probing the underground at the Badenian type locality: geology and sedimentology of the Baden-Sooss section (Middle Miocene, Vienna Basin, Austria). Geol. Carpath. 59, 375–394 (2008).

    CAS  Google Scholar 

  • 23.

    Lukeneder, A. & Zverkov, N. First evidence of a conical-toothed pliosaurid (Reptilia, Sauropterygia) in the Hauterivian of the Northern Calcareous Alps, Austria. Cretac. Res. 106, 104248 (2020).

    Article  Google Scholar 

  • 24.

    Geologische Karte der Republik Österreich, Sheet Ybbsitz 71 1:50.000. Geologische Bundesanstalt Wien (1988).

  • 25.

    Geologische Karte der Republik Österreich, Sheet Mariazell 72, 1:50.000. Geologische Bundesanstalt Wien (1997).

  • 26.

    Tollmann, A. Analyse des klassischen nordalpinen Mesozoikums 580 (Franz Deuticke Wien, 1976).

  • 27.

    von Hauer, F. R. Ueber die Gliederung der Trias-, Lias- und Juragebilde in den nördlichsten Alpen. Kaiserlich Königliche reichsanstalt 4, 715–783 (1853).

    Google Scholar 

  • 28.

    Piller, W. E. et al. M. Die Stratigraphische Tabelle von Österreich 2004 (sedimentäre Schichtfolgen). Kommission für die Paläontologische und stratigraphische Erforschung Österreichs. Österreichische Akademie der Wissenschaften und Österreichische Stratigraphische Kommission, Wien (2004).

  • 29.

    Glaessner, M. F. Eine Crustacenfauna aus den Lunzer Schichten Niederӧsterreichs. Jahrbuch der geologischen Bundes-Anstalt 81, 467–489 (1931).

    Google Scholar 

  • 30.

    Bronn, H. G. Nachtrag über die Trias-Fauna von Raibl. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1859, 39–45 (1859).

    Google Scholar 

  • 31.

    Abel, O. Fossile Flugfische. Abhandlungen der kaiserlich königlichen Geologischen Reichsanstalt 56, 1–88 (1906).

    Google Scholar 

  • 32.

    Trauth, F. Geologie des Kalkalpenbereiches der zweiten Wiener Hochquellenleitung. Abhandlungen der Geologisches Bundesanstalt 26, 1–99 (1948).

    Google Scholar 

  • 33.

    Mostler, H. & Scheuring, B. W. Mikrofloren aus dem Langobard und Cordevol der Nördlichen Kalkalpen und das Problem des beginns der Keupersedimentation im Germanischen Raum. Geol. Paläontol. Mitteilungen Innsbruck 4, 1–35 (1974).

    Google Scholar 

  • 34.

    Hornung, T. & Brandner, R. Biochronostratigraphy of the Reingraben Turnover (Hallstatt facies belt): Local black shale events controlled by regional tectonism, climatic change and plate tectonics. Facies 51, 460–479 (2005).

    Article  Google Scholar 

  • 35.

    Hornung, T., Brandner, R., Krystyn, L., Joachimski, M. M. & Keim, L. Multistratigraphic constraints on the NW Tethyan ’Carnin Crisis. New Mexico Museum Nat. Hist. Bull. 41, 59–67 (2007).

    Google Scholar 

  • 36.

    Hasiotis, S. T., Platt, B. F., Hembree, D. I. & Everhart, M. J. In The Trace−Fossil Record of Vertebrates (ed. Miller, W.) 196–218 (Elsevier, Amsterdam, 2007).

    Google Scholar 

  • 37.

    Gordon, C. M., Roach, B. T., Parker, W. G. & Briggs, D. E. G. Distinguishing regurgitalites and coprolites: a case study using a Triassic bromalite with soft tissue of the pseudosuchian archosaur Revueltosaurus. Palaios 35, 111–121 (2020).

    ADS  Article  Google Scholar 

  • 38.

    Salamon, M. A., Gorzelak, P., Niedźwiedzki, R., Trzęsiok, D. & Baumiller, T. K. Trends in shell fragmentation as evidence of mid-Paleozoic changes in marine predation. Paleobiology 40, 14–23 (2014).

    Article  Google Scholar 

  • 39.

    Salamon, M. A., Leśko, K. & Gorzelak, P. Experimental tumbling of Dreissena polymorpha: implications for recognizing durophagous predation in the fossil record. Facies 64, 4 (2018).

    Article  Google Scholar 

  • 40.

    Salamon, M. A., Brachaniec, T. & Gorzelak, P. Durophagous fish predation traces versus tumbling-induced shell damage: a paleobiological perspective. Palaios 35, 37–47 (2020).

    ADS  Article  Google Scholar 

  • 41.

    Reboulet, S. & Rard, A. Double alignments of ammonoid aptychi from the Lower Cretaceous of Southeast France: result of a post−mortem transport or bromalites?. Acta Palaeontol. Pol. 53, 261–274 (2008).

    Article  Google Scholar 

  • 42.

    Mapes, R. H. & Chaffin, D. T. In Predation on Cephalopods: A General Overview with a Case Study from the Upper Carboniferous of Texas (eds Kelley, H. P. et al.) 177–213 (Kluwer/Plenum, New York, 2003).

    Google Scholar 

  • 43.

    Hoffmann, R., Stevens, K., Keupp, H., Simonsen, S. & Schweigert, G. Regurgitalites: a winodw into the trophic ecology of fossil cephalopods. J. Geol. Soc. 177, 82–102 (2020).

    ADS  Article  Google Scholar 

  • 44.

    Keupp, H. Ammoniten: Paläobiologische Erfolgsspiralen (Thorbecke, Stuttgart, 2000).

    Google Scholar 

  • 45.

    Vullo, R. Direct evidence of hybodont shark predation on Late Jurassic ammonites. Naturwissenschaften 98, 545–549 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 46.

    Ward, P., Dooley, F. & Barord, G. J. Nautilus: biology, systematics, and paleobiology as viewed from 2015. Swiss J. Palaeont. 135, 169–185 (2016).

    Article  Google Scholar 

  • 47.

    Palmer, A. R. Fish predation and the evolution of gastropod shell sculpture: experimental and geographic evidence. Evolution 33, 697–713 (1979).

    PubMed  Article  Google Scholar 

  • 48.

    Reis, O. M. Coelacanthus lunzensis Teller. Jahrbuch der kaiserlich königlichen Geologischen Reichsanstalt 50, 187–192 (1900).

    Google Scholar 

  • 49.

    Skrzycki, P., Niedźwiedzki, G. & Tałanda, M. Dipnoan remains from the Lower-Middle Triassic of the Holy Cross Mountains and northeastern Poland, with remarks on dipnoan palaeobiogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 332–345 (2018).

    Article  Google Scholar 

  • 50.

    Mutter, R. J. Tooth variability and reconstruction of dentition in Acrodus sp (Chondrichthyes, Selachii, Hybodontoidea) from the Grenzbitumenzone (Middle Triassic) of Monte San Giorgio (Ticino, Switzerland). Geologisch 3, 25–31 (1998).

    Google Scholar 

  • 51.

    Griffith, J. The Triassic fish Saurichthys krambergeri Schlosser. Palaeontology 5, 344–354 (1962).

    Google Scholar 

  • 52.

    Romano, C., Kogan, I., Jenks, J., Jerjen, I. & Brinkmann, W. Saurichthys and other fossil fishes from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA), with a discussion of saurichthyid palaeogeography and evolution. Bull. Geosci. 87, 543–570 (2012).

    Article  Google Scholar 

  • 53.

    Cavin, L., Furrer, H. & Obrist, Ch. New coelacanth material from the Middle Triassic of eastern Switzerland, and comments on the taxic diversity of actinistans. Swiss J. Geosci. 106, 161–177 (2013).

    Article  Google Scholar 

  • 54.

    Hauser, L. M. & Martill, D. M. Evidence for coelacanths in the Late Triassic (Rhaetian) of England. Proc. Geol. Assoc. 124, 982–987 (2013).

    Article  Google Scholar 

  • 55.

    Tintori, A. Fish biodiversity in the marine Norian (Late Triassic) of northern Italy: the first neopterygian radiation. Italian J. Zool. 65, 193–198 (1998).

    Article  Google Scholar 

  • 56.

    Wilga, C. D. & Motta, P. J. Durophagy in sharks: feeding mechanics of hammerhead sharks Sphyrna tiburo. J. Exp. Biol. 203, 2781–2796 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Huber, D. R., Eason, T. G., Hueter, R. E. & Motta, P. J. Analysis of the bite force and mechanical design of the feeding mechanism of the durophagous horn shark Heterodontus francisci. J. Exp. Biol. 208, 3553–3571 (2005).

    Article  Google Scholar 

  • 58.

    Cappetta, H. Chondrichthyes II: Mesozoic and Cenozoic Elasmobranchii Handbook of Paleoichthyology 1–193 (Gustav Fischer Verlag, Stuttgart, 1987).

    Google Scholar 

  • 59.

    Rees, J. Interrelationships of Mesozoic hybodont sharks as indicated by dental morphology: preliminary results. Acta Geol. Pol. 58, 217–221 (2008).

    Google Scholar 

  • 60.

    Massare, J. A. Tooth morphology and prey preference of Mesozoic marine reptiles. J. Vertebr. Paleontol. 7, 121–137 (1987).

    Article  Google Scholar 

  • 61.

    Schmidt, M. Die Lebewelt Unserer Trias 461 (Ferdinand Rau, Öhringen, 1928).

    Google Scholar 

  • 62.

    Griffith, J. On the anatomy of two saurichthyid fishes, Saurichthys striolatus (Bronn) and S. curioni (Belotti). Proc. Zool. Soc. Lond. 132, 587–606 (1959).

    Article  Google Scholar 

  • 63.

    Wen, W. et al. Coelacanths from the Middle Triassic Luoping Biota, Yunnan, South China, with the earliest evidence of ovoviviparity. Acta Palaeontol. Pol. 58, 175–193 (2013).

    Google Scholar 

  • 64.

    Bernardi, M., Avanzini, M. & Bizzarini, F. Vertebrate fauna from the San Cassiano Formation (early Carnian) of the Dolomites region. Geo. Alp. 8, 122–127 (2011).

    Google Scholar 

  • 65.

    Dalla Vecchia, F. M. Reptile remains from the Middle-Upper Triassic of Carnic and Julian Alps (Friuli-Venezia Giulia, Northeastern Italy), Gortania. Atti del Museo Friulano di Storia Naturale 15, 49–66 (1994).

    Google Scholar 

  • 66.

    Buffetaut, E. & Novak, M. A cyamodontid placodont (Reptilia: Sauropterygia) from the Triassic of Slovenia. Palaeontology 51, 1301–1306 (2008).

    Article  Google Scholar 

  • 67.

    Sirna, G., Dalla Vecchia, F. M., Muscio, G. & Piccoli, G. Catalogue of paleozoic and mesozoic vertebrates and vertebrate localities of the Tre Venezie area (North Eastern Italy). Mem. Istit. Geol. Mineral. Univ. Padova 46, 255–281 (1994).

    Google Scholar 

  • 68.

    Qvarnström, M., Niedźwiedzki, G., Tafforeau, P., Žigaitė, Ž & Ahlberg, P. E. Synchrotron phase-contrast microtomography of coprolites generates novel palaeobiological data. Sci. Rep. 7, 2723 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 69.

    Vermeij, G. J. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3, 245–258 (1977).

    Article  Google Scholar 

  • 70.

    Baumiller, T. K. et al. Post-Paleozoic crinoid radiation to benthic predation preceded the Mesozoic marine revolution. Proc. Natl. Acad. Sci. USA 107, 5893–5896 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 71.

    McRoberts, C. A. Triassic bivalves and the initial marine Mesozoic revolution; a role of predators?. Geology 29, 359–362 (2001).

    ADS  Article  Google Scholar 

  • 72.

    Huang, J. et al. Repeated evolution of durophagy during ichthyosaur radiation after mass extinction indicated by hidden dentition. Sci. Rep. 10, 7798 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Walker, S. E. & Brett, C. E. Post-Paleozoic patterns in marine predations: was there a Mesozoic and Cenozoic Marine Predatory Revolution?. Palentol. Soc. Pap. 8, 119–193 (2002).

    Article  Google Scholar 

  • 74.

    Underwood, C. J. Diversification of the Neoselachii (Chondrichthyes) during the Jurassic and Cretaceous. Paleobiology 32, 215–235 (2006).

    Article  Google Scholar 

  • 75.

    Kriwet, J., Kiessling, W. & Klug, S. Diversification trajectories and evolutionary lifehistory traits in early sharks and batoids. Proc. R. Soc. Lond. B 276, 945–951 (2009).

    Google Scholar 

  • 76.

    Gorzelak, P., Salamon, M. A. & Baumiller, T. K. Predator induced macroevolutionary trends in Mesozoic crinoids. Proc. Natl. Acad. Sci. USA 109, 7004–7007 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 77.

    Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early triassic marine biotic recovery: the predators’ perspective. PLoS ONE 9, e88987 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 78.

    Gorzelak, P. Microstructural evidence for stalk autotomy in Holocrinus: the oldest stem-group isocrinid. Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 202–207 (2018).

    Article  Google Scholar 

  • 79.

    Gorzelak, P. et al. Experimental neoichnology of post-autotomy arm movements of sea lilies and possible evidence of thrashing behaviour in Triassic holocrinids. Sci. Rep. 10, 15147 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    An antidote to “fast fashion”

    A holistic approach in herbicide resistance research and management: from resistance detection to sustainable weed control