in

Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes

  • 1.

    Hambright, K. D., Gophen, M. & Serruya, S. Influence of long-term climatic changes on the stratification of a subtropical, warm monomictic lake. Limnol. Oceanogr. 39, 1233–1242 (1994).

    ADS  Article  Google Scholar 

  • 2.

    Pilla, R. M. et al. Browning-related decreases in water transparency lead to long-term increases in surface water temperature and thermal stratification in two small lakes. J. Geophys. Res. Biogeo. https://doi.org/10.1029/2017JG004321 (2018).

    Article  Google Scholar 

  • 3.

    Foley, B., Jones, I. D., Maberly, S. C. & Rippey, B. Long-term changes in oxygen depletion in a small temperate lake: Effects of climate change and eutrophication. Freshwater Biol. 57, 278–289 (2012).

    CAS  Article  Google Scholar 

  • 4.

    Knoll, L. B. et al. Browning-related oxygen depletion in an oligotrophic lake. Inland Waters https://doi.org/10.1080/20442041.2018.1452355 (2018).

    Article  Google Scholar 

  • 5.

    O’Reilly, C. M., Alin, S. R., Plisnier, P.-D., Cohen, A. S. & McKee, B. A. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika Africa. Nature 424, 766–768 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Verburg, P., Hecky, R. E. & Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 301, 505–507 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 7.

    Saulnier-Talbot, É. et al. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes. PLoS ONE https://doi.org/10.1371/journal.pone.0086561 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Cohen, A. S. et al. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. P. Natl. Acad. Sci. 113, 9563–9568 (2016).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Hansen, G. J. A., Read, J. S., Hansen, J. F. & Winslow, L. A. Projected shifts in fish species dominance in Wisconsin lakes under climate change. Glob. Change Biol. 23, 1463–1476 (2017).

    ADS  Article  Google Scholar 

  • 10.

    De Stasio, B. T., Hill, D. K., Kleinhans, J. M., Nibbelink, N. P. & Magnuson, J. J. Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton. Limnol. Oceanogr. 41, 1136–1149 (1996).

    ADS  Article  Google Scholar 

  • 11.

    Craig, N., Jones, S. E., Weidel, B. C. & Solomon, C. T. Habitat, not resource availability, limits consumer production in lake ecosystems. Limnol. Oceanogr. 60, 2079–2089 (2015).

    ADS  Article  Google Scholar 

  • 12.

    Brothers, S. et al. A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnol. Oceanogr. 59, 1388–1398 (2014).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Marotta, H. et al. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat. Clim. Change https://doi.org/10.1038/NCLIMATE2222 (2014).

    Article  Google Scholar 

  • 14.

    Schneider, P. & Hook, S. J. Space observations of inland water bodies show rapid surface warming since. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045059 (2010).

    Article  Google Scholar 

  • 15.

    O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. https://doi.org/10.1002/2015GL066235 (2015).

    Article  Google Scholar 

  • 16.

    Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. https://doi.org/10.1038/s41561-019-0322-x (2019).

    Article  Google Scholar 

  • 17.

    Kraemer, B. M. et al. Morphometry and average temperature affect lake stratification responses to climate change. Geophys. Res. Lett. https://doi.org/10.1002/2015GL064097 (2015).

    Article  Google Scholar 

  • 18.

    Keller, W., Heneberry, J. & Leduc, J. Linkages between weather, dissolved, organic carbon, and cold-water habitat in a Boreal Shield lake recovering from acidification. Can. J. Fish. Aquat. Sci. 62, 341–347 (2005).

    CAS  Article  Google Scholar 

  • 19.

    Wagner, A., Volkmann, S. & Dettinger-Klemm, P. M. A. Benthic-pelagic coupling in lake ecosystems: The key role of chironomid pupae as prey of pelagic fish. Ecosphere https://doi.org/10.1890/ES11-00181.1 (2012).

    Article  Google Scholar 

  • 20.

    Straile, D., Kerimoglu, O. & Peeters, F. Trophic mismatch requires seasonal heterogeneity of warming. Ecology 96, 2794–2805 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Schmid, M. & Köster, O. Excess warming of a Central European lake driven by solar brightening. Water Resour. Res. https://doi.org/10.1002/2016WR018651 (2016).

    Article  Google Scholar 

  • 22.

    Woolway, R. I., Meinson, P., Nõges, P., Jones, I. D. & Laas, A. Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Clim. Change 141, 759–773 (2017).

    Article  Google Scholar 

  • 23.

    Read, J. S. & Rose, K. C. Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations. Limnol. Oceanogr. 58, 921–931 (2013).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Winslow, L. A., Read, J. S., Hansen, G. J. A. & Hanson, P. C. Small lakes show muted climate change signal in deepwater temperatures. Geophys. Res. Lett. https://doi.org/10.1002/2014GL062325 (2015).

    Article  Google Scholar 

  • 25.

    Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Fee, E. J., Hecky, R. E., Kasian, S. E. M. & Cruikshank, D. R. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol. Oceanogr. 41, 912–920 (1996).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Snucins, E. & Gunn, J. Interannual variation in the thermal structure of clear and colored lakes. Limnol. Oceanogr. 45, 1639–1646 (2000).

    ADS  Article  Google Scholar 

  • 28.

    Jankowski, T., Livingstone, D. M., Bührer, H., Forster, R. & Niederhauser, P. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol. Oceanogr. 51, 815–819 (2006).

    ADS  Article  Google Scholar 

  • 29.

    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).

    ADS  Article  Google Scholar 

  • 30.

    Maberly, S. C. et al. Global lake thermal regions shift under climate change. Nat. Commun. 11, 1232. https://doi.org/10.1038/s41467-020-15108-z (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    IPCC In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 32.

    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change https://doi.org/10.1038/NCLIMATE2563 (2015).

    Article  Google Scholar 

  • 33.

    Rose, K. C., Winslow, L. A., Read, J. S. & Hansen, G. J. A. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10027 (2016).

    Article  Google Scholar 

  • 34.

    Benson, B. J. et al. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Change 112, 299–323 (2012).

    ADS  Article  Google Scholar 

  • 35.

    Sharma, S. et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Change https://doi.org/10.1038/s41558-018-0393-5 (2019).

    Article  Google Scholar 

  • 36.

    Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth. Environ. 1, 388–403 (2020).

    ADS  Article  Google Scholar 

  • 37.

    Zhang, G. et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2020.103269 (2020).

    Article  Google Scholar 

  • 38.

    Dokulil, M. T. et al. Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation. Limnol. Oceanogr. 51, 2787–2793 (2006).

    ADS  Article  Google Scholar 

  • 39.

    Ficker, H., Luger, M. & Gassner, H. From dimictic to monomictic: Empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshw. Biol. https://doi.org/10.1111/fwb.12946 (2017).

    Article  Google Scholar 

  • 40.

    Markfort, C. D. et al. Wind sheltering of a lake by a tree canopy or bluff topography. Water Resour. Res. https://doi.org/10.1029/2009WR007759 (2010).

    Article  Google Scholar 

  • 41.

    Read, J. S. et al. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys. Res. Lett. https://doi.org/10.1029/2012GL051886 (2012).

    Article  Google Scholar 

  • 42.

    Beniston, M., Diaz, H. F. & Bradley, R. S. Climatic change at high elevation sites: An overview. Clim. Change 36, 233–251 (1997).

    Article  Google Scholar 

  • 43.

    Sommaruga-Wögrath, S. et al. Temperature effects on the acidity of remote alpine lakes. Nature 387, 64–67 (1997).

    ADS  Article  Google Scholar 

  • 44.

    Václavík, T., Lautenback, S., Kuemmerle, T. & Seppelt, R. Mapping global land system archetypes. Glob. Environ. Change https://doi.org/10.1016/j.gloenvcha.2013.09.004 (2013).

    Article  Google Scholar 

  • 45.

    Bartosiewicz, M. et al. Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10117 (2019).

    Article  Google Scholar 

  • 46.

    Williamson, C. E. et al. Ecological consequences of long-term browning in lakes. Sci. Rep. https://doi.org/10.1038/srep18666 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Evans, C. D., Chapman, P. J., Clark, J. M., Monteith, D. T. & Cresser, M. S. Alternative explanations for rising dissolved organic carbon export from organic soils. Glob. Change Biol. 12, 2044–2053 (2006).

    ADS  Article  Google Scholar 

  • 48.

    Monteith, D. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature https://doi.org/10.1038/nature06316 (2007).

    Article  PubMed  Google Scholar 

  • 49.

    Couture, S., Houle, D. & Gagnon, C. Increases of dissolved organic carbon in temperate and boreal lakes in Quebec Canada. Environ. Sci. Pollut. Res. 19, 361–371 (2012).

    CAS  Article  Google Scholar 

  • 50.

    Read, J. S. et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Model. Softw. 26, 1325–1336 (2011).

    Article  Google Scholar 

  • 51.

    Gray, E., Mackay, E. B., Elliot, J. A., Folkard, A. M. & Jones, I. D. Wide-spread inconsistency in estimation of lake mixed depth impacts interpretation of limnological processes. Water Res. https://doi.org/10.1016/j.watres.2019.115136 (2020).

    Article  PubMed  Google Scholar 

  • 52.

    Prokopkin, I. G. & Zadereev, E. S. A model study of the effect of weather forcing on the ecology of a meromictic Siberian Lake. J. Oceanol. Limnol. 36, 2018–2032 (2018).

    ADS  CAS  Article  Google Scholar 

  • 53.

    Austin, J. A. & Colman, S. M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. https://doi.org/10.1029/2006GL029021 (2007).

    Article  Google Scholar 

  • 54.

    Preston, D. L. et al. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure. Geophys. Res. Lett. https://doi.org/10.1002/2016GL069036 (2016).

    Article  Google Scholar 

  • 55.

    Sadro, S., Melack, J. M., Sickman, J. O. & Skeen, K. Climate warming response of mountain lakes affected by variations in snow. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10099 (2018).

    Article  Google Scholar 

  • 56.

    Zhang, G. et al. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. J. Geophys. Res. Atmos. 119, 8552–8567 (2014).

    ADS  Article  Google Scholar 

  • 57.

    Taylor, C. A. & Stefan, H. G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 375, 601–612 (2009).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Zhang, X. Conjunctive surface water and groundwater management under climate change. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2015.00059 (2015).

    Article  Google Scholar 

  • 59.

    Gaiser, E. E., Deyrup, N. D., Bachmann, R. W., Battoe, L. E. & Swain, H. M. Effects of climate variability on transparency and thermal structure in subtropical, monomictic Lake Annie Florida. Fund. Appl. Limnol. 175, 217–230 (2009).

    Article  Google Scholar 

  • 60.

    Zhang, J. et al. Long-term patterns of dissolved organic carbon in lakes across eastern Canada: Evidence of a pronounced climate effect. Limnol. Oceanogr. 55, 30–42 (2010).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Williamson, C. E. et al. Sentinel responses to droughts, wildfires, and floods: effects of UV radiation on lakes and their ecosystem services. Front. Ecol. Environ. 14, 102–109 (2016).

    Article  Google Scholar 

  • 62.

    Thiery, W. et al. Understanding the performance of the Flake model over two African Great Lakes. Geosci. Model Dev. 7, 317–337 (2014).

    ADS  Article  Google Scholar 

  • 63.

    Shatwell, T., Thiery, W. & Kirillin, G. Future projections of temperature and mixing regime of European temperate lakes. Hydrol. Earth Syst. Sci. 23, 1533–1551 (2019).

    ADS  Article  Google Scholar 

  • 64.

    Winslow, L. A., Read, J. S., Hansen, G. J. A., Rose, K. C. & Robertson, D. M. Seasonality of change: summer warming rates do not fully represent effects of climate change on lake temperatures. Limnol. Oceanogr. 62, 2168–2178 (2017).

    ADS  Article  Google Scholar 

  • 65.

    Fang, X. & Stefan, H. G. Simulations of climate effects on water temperatures, dissolved oxygen, and ice and snow covers in lakes of the contiguous United States under past and future climate scenarios. Limnol. Oceanogr. 54, 2359–2370 (2009).

    ADS  CAS  Article  Google Scholar 

  • 66.

    Rösner, R., Müller-Navarra, D. C. & Zorita, E. Trend analysis of weekly temperatures and oxygen concentrations during summer stratification in Lake Plußsee: a long-term study. Limnol. Oceanogr. 57, 1479–1491 (2012).

    ADS  Article  CAS  Google Scholar 

  • 67.

    Rogora, M. et al. Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia 824, 33–50 (2018).

    CAS  Article  Google Scholar 

  • 68.

    Wilhelm, S. & Adrian, R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol. 53, 226–237 (2008).

    CAS  Article  Google Scholar 

  • 69.

    North, R. P., North, R. L., Livingstone, D. M., Köster, O. & Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. https://doi.org/10.1111/gcb.12371 (2014).

    Article  Google Scholar 

  • 70.

    Zadereev, E. S., Tolomeev, A. P., Drobotov, A. V. & Kolmakova, A. A. Impact of weather variability on spatial and seasonal dynamics of dissolved and suspended nutrients in water column of meromictic Lake Shira. Contemp. Probl. Ecol. 21, 515–530 (2014).

    Google Scholar 

  • 71.

    Couture, R.-M., deWit, H. A., Tominaga, K., Kiuru, P. & Markelov, I. Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs. J. Geophys. Res. Biogeo. https://doi.org/10.1002/2015JG003065 (2015).

    Article  Google Scholar 

  • 72.

    Richardson, D. C. et al. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across Northeastern North America (1975–2004). Water https://doi.org/10.3390/w9060442 (2017).

    Article  Google Scholar 

  • 73.

    Kalff, J. Limnology: Inland Water Ecosystems (Prentice Hall, Upper Saddle River, 2002).

    Google Scholar 

  • 74.

    Wetzel, R. G. Limnology: Lake and River Ecosystems (Academic Press, New York, 2001).

    Google Scholar 

  • 75.

    Woolway, R. I. et al. Diel surface temperature range scales with lake size. PLoS ONE https://doi.org/10.1371/journal.pone.0152466 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 76.

    Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P. & Breckenridge, J. K. Toward a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623 (2011).

    ADS  Article  Google Scholar 

  • 77.

    Winslow, L. et al. rLakeAnalyzer: Lake physics tools. R package version 1.11.4.1. https://CRAN.R-project.org/package=rLakeAnalyzer (2019).

  • 78.

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    MathSciNet  MATH  Article  Google Scholar 

  • 79.

    Hirsch, R. M., Slack, J. R. & Smith, R. A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18, 107–121 (1982).

    ADS  Article  Google Scholar 

  • 80.

    Jassby, A. D. & Cloern, J. E. wq: Some tools for exploring water quality monitoring data. R package version 0.4.8. https://cran.r-project.org/package=wq (2016).

  • 81.

    Leach, T. H. et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: the relative importance of light and thermal stratification. Limnol. Oceanogr. 63, 628–646 (2018).

    ADS  CAS  Article  Google Scholar 

  • 82.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH  Article  Google Scholar 

  • 83.

    James, G., Witten, D., Hastie, T. & Tibshirani, R. Tree-based methods. In An Introduction to Statistical Learning: With Applications in R (Springer, Berlin, 2015).

    Google Scholar 

  • 84.

    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recogn. Lett. 31, 2225–2236 (2010).

    Article  Google Scholar 

  • 85.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 027–046 (2013).

    Article  Google Scholar 

  • 86.

    Auret, L. & Alrich, C. Interpretation of nonlinear relationships between process variables by use of random forests. Miner. Eng. 35, 27–42 (2012).

    CAS  Article  Google Scholar 

  • 87.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 88.

    R Core Team. R: a language and environment for statistical computing, R Foundation for Statistical Computing. https://www.R-project.org/ (2019).

  • 89.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).

    Google Scholar 


  • Source: Ecology - nature.com

    An antidote to “fast fashion”

    A holistic approach in herbicide resistance research and management: from resistance detection to sustainable weed control