in

Diversity, dynamics, direction, and magnitude of high-altitude migrating insects in the Sahel

  • 1.

    Dingle, H. & Drake, A. What is migration?. Bioscience 57, 113–121 (2007).

    Article  Google Scholar 

  • 2.

    Dingle, H. Migration: The Biology of Life on the Move (Oxford University Press, Oxford, 2014).

    Google Scholar 

  • 3.

    Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302 (2015).

    PubMed  Article  Google Scholar 

  • 4.

    Maiga, I. H., Lecoq, M. & Kooyman, C. Ecology and management of the Senegalese grasshopper Oedaleus senegalensis (Krauss 1877) (Orthoptera: Acrididae) in West Africa. Ann. Soc. Entomol. Fr. 44, 271–288 (2008).

    Article  Google Scholar 

  • 5.

    Glick, P. A. The distribution of insects, spiders, and mites in the air. United States Department of Agriculture, Technical Bulletin 673, (1939).

  • 6.

    Rainey, R. C. Migration and Meteorology (Clarendon Press, Oxford, 1989).

    Google Scholar 

  • 7.

    Cheke, R. A. et al. A migrant pest in the Sahel: the Senegalese grasshopper Oedaleus senegalensis. Philos. Trans. R. Soc. B 328, 539–553 (1990).

    ADS  Google Scholar 

  • 8.

    Chapman, J. W., Reynolds, D. R. & Smith, A. D. Migratory and foraging movements in beneficial insects: a review of radar monitoring and tracking methods. Int. J. Pest Manag. 50, 225–232 (2004).

    Article  Google Scholar 

  • 9.

    Reynolds, D. R., Chapman, J. W. & Harrington, R. The migration of insect vectors of plant and animal viruses. Adv. Virus Res. 67, 453–517 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Garms, R., Walsh, J. F. & Davies, J. B. Studies on the reinvasion of the Onchocerciasis Control Programme in the Volta River basin by Simulium damnosum s.l. with emphasis on the sout-western areas. Tropenmed. Parasitol. 30, 345–362 (1979).

    CAS  PubMed  Google Scholar 

  • 11.

    Sellers, R. F. Weather, host and vector–their interplay in the spread of insect-borne animal virus diseases. J. Hyg. (Lond) 85, 65–102 (1980).

    CAS  Article  Google Scholar 

  • 12.

    Ming, J. et al. Autumn southward ‘return’ migration of the mosquito Culex tritaeniorhynchus in China. Med. Vet. Entomol. 7, 323–327 (1993).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Ritchie, S. A. & Rochester, W. Wind-blown mosquitoes and introduction of Japanese encephalitis into Australia. Emerg. Infect. Dis. 7, 900–903 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Eagles, D., Walker, P. J., Zalucki, M. P. & Durr, P. A. Modelling spatio-temporal patterns of long-distance Culicoides dispersal into northern Australia. Prev. Vet. Med. 110, 312–322 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Huestis, D. L. et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 574, 404–408 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Green, K. The transport of nutrients and energy into the Australian Snowy Mountains by migrating bogong moth Agrotis infusa. Austral. Ecol. 36, 25–34 (2011).

    Article  Google Scholar 

  • 17.

    Landry, J.-S. & Parrott, L. Could the lateral transfer of nutrients by outbreaking insects lead to consequential landscape-scale effects?. Ecosphere 7, e01265 (2016).

    Article  Google Scholar 

  • 18.

    Stefanescu, C. et al. Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western Palaearctic. Ecography (Cop.) 36, 474–486 (2013).

    Article  Google Scholar 

  • 19.

    Chapman, J. W. et al. Seasonal migration to high latitudes results in major reproductive benefits in an insect. Proc. Natl. Acad. Sci. 109, 14924–14929 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 20.

    Chapman, J. W. et al. Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr. Biol. 18, 514–518 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Hallworth, M. T., Marra, P. P., McFarland, K. P., Zahendra, S. & Studds, C. E. Tracking dragons: stable isotopes reveal the annual cycle of a long-distance migratory insect. Biol. Lett. 14, 20180741 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Hu, G. et al. Mass seasonal bioflows of high-flying insect migrants. Science (80-.) 354, 1584–1587 (2016).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Wotton, K. R. et al. Mass seasonal migrations of hoverflies provide extensive pollination and crop protection services. Curr. Biol. 29, 2167-2173.e5 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Drake, V. A. & Reynolds, D. R. Radar Entomology: Observing Insect Flight and Migration (CAB International, Wallingford, 2012).

    Google Scholar 

  • 25.

    Holland, R. A. How and why do insects migrate?. Science (80-.) 313, 794–796 (2006).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Faiman, R. et al. Marking mosquitoes in their natural larval sites using 2 H-enriched water: a promising approach for tracking over extended temporal and spatial scales. Methods Ecol. Evol. 10, 1274–1285 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Cheke, R. A. & Tratalos, J. A. Migration, patchiness, and population processes illustrated by two migrant pests. Bioscience 57, 145–154 (2007).

    Article  Google Scholar 

  • 28.

    Lecoq, M. Recent progress in Desert and Migratory Locust management in Africa. Are preventative actions possible ? 10, 277–291 (2001). https://doi.org/https://doi.org/10.1665/1082-6467(2001)010[0277:RPIDAM]2.0.CO;2.

  • 29.

    Rose, D. J. W., Dewhurst, C. F. & Page, W. W. African Armyworm Handbook: The Status, Biology, Ecology, Epidemiology and Management of Spodoptera exempta (Lepidoptera: Noctuidae) (University of Greenwich, Natural Resources Institute, 2000).

    Google Scholar 

  • 30.

    Gebreyes, W. A. et al. The global one health paradigm: challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low-resource settings. PLoS Negl. Trop. Dis. 8, e3257 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Nicholson, S. E. The West African Sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol. 2013, 32 (2013).

    Article  Google Scholar 

  • 32.

    Chapman, J. W., Reynolds, D. R., Smith, A. D., Smith, E. T. & Woiwod, I. P. An aerial netting study of insects migrating at high altitude over England. Bull. Entomol. Res. 94, 123–136 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Drake, V. A. & Gatehouse, A. G. Insect Migration: Tracking Resources Through Space and Time (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  • 34.

    Southwood, T. R. E. Migration of terrestrial arthropods in relation to habitat. Biol. Rev. 37, 171–211 (1962).

    Article  Google Scholar 

  • 35.

    Frank, J. & Kanamitsu, K. Paederus, sensu lato (Coleoptera: Staphilinidae): natural history and medical importance. J. Med. Entomol. 24, 155–191 (1987).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Vanhecke, C., Le Gall, P. & Gaüzère, B. A. Vesicular contact dermatitis due to Paederus in Cameroon and review of the literature. Bull. la Soc. Pathol. Exot. 108, 328–336 (2015).

    CAS  Article  Google Scholar 

  • 37.

    Duviard, D. Migrations of Dysdercus spp (Hemiptera: Pyrrhocoridae) related to movements of the Inter-Tropical Convergence Zone in West Africa. Bull. Entomol. Res. 67, 185 (1977).

    Article  Google Scholar 

  • 38.

    Dao, A. et al. Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature 516, 387–390 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Garrett-Jones, C. The possibility of active long-distance migrations by Anopheles pharoensis Theobald. Bull. World Health Organ. 27, 299–302 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Faiman, R. et al. Quantifying flight aptitude variation in wild A. gambiae s.l. in order to identify long-distance migrants. Malar. J. DOI: https://doi.org/10.1186/s12936-020-03333-2 (2020).

  • 41.

    Morkel, C. & Jacobs, D. H. New records of stilt bugs (Insecta, Heteroptera, Berytidae) from the Afrotropical region, with distributional and ecological notes. Andrias 20, 153–173 (2014).

    Google Scholar 

  • 42.

    Hocking, B. The intrinsic range and speed of flight of insects. Trans. R. Entomol. Soc. Lond. 104, 223–345 (1953).

    Google Scholar 

  • 43.

    Snow, W. F. Field estimates of the flight speed of some West African mosquitoes. Ann. Trop. Med. Parasitol. 74, 239–242 (1980).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Lee, D.-H. & Leskey, T. C. Flight behavior of foraging and overwintering brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). Bull. Entomol. Res. 105, 566–573 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Taylor, R. A. J., Bauer, L. S., Poland, T. M. & Windell, K. N. Flight performance of Agrilus planipennis (Coleoptera: Buprestidae) on a flight mill and in free flight. J. Insect Behav. 23, 128–148 (2010).

    Article  Google Scholar 

  • 46.

    Cooter, R. J., Winder, D. & Chancellor, T. C. Tethered flight activity of Nephotettix virescens (Hemiptera: Cicadellidae) in the Philippines. Bull. Entomol. Res. 90, 49–55 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Briegel, H., Knüsel, I. & Timmermann, S. E. Aedes aegypti: size, reserves, survival, and flight potential. J. Vector Ecol. Ecol. 26, 21–31 (2001).

    CAS  Google Scholar 

  • 48.

    Kaufmann, C. & Briegel, H. Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus. J. Vector Ecol. 29, 140–153 (2004).

    PubMed  Google Scholar 

  • 49.

    Reynolds, D. R. et al. Radar studies of the vertical distribution of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations. Bull. Entomol. Res. 95, 259–274 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Wood, C. R. et al. Flight periodicity and the vertical distribution of high-altitude moth migration over southern Britain. Bull. Entomol. Res. 99, 525–535 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Reynolds, D. R. & Riley, J. R. A migration of grasshoppers, particularly Diabolocatantops axillaris (Thunberg) (Orthoptera: Acrididae), in the West African Sahel. Bull. Entomol. Res. 78, 251–271 (1988).

    Article  Google Scholar 

  • 52.

    Madougou, S., Saïd, F., Campistron, B., Lothon, M. & Kebe, C. Results of UHF radar observation of the nocturnal low-level jet for wind energy applications. Acta Geophysica 60, (2012).

  • 53.

    Fiedler, S., Schepanski, K., Heinold, B., Knippertz, P. & Tegen, I. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J. Geophys. Res. Atmos. 118, 6100–6121 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Åkesson, S., Bianco, G. & Hedenström, A. Negotiating an ecological barrier: crossing the Sahara in relation to winds by common swifts. Philos. Trans. R. Soc. B-Biological Sci. Ser. B, Biol. Sci. 371, 20150393 (2016).

  • 55.

    Åkesson, S., Klaassen, R., Holmgren, J., Fox, J. W. & Hedenström, A. Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators. PLoS ONE 7, e41195 (2012).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Jackson, H. A review of foraging and feeding behaviour, and associated anatomical adaptations, Afrotropical nightjars. Ostrich 74, 187–204 (2003).

    Article  Google Scholar 

  • 57.

    Fenton, M. B. & Griffin, D. R. High-altitude pursuit of insects by echolocating bats. J. Mammal. 78, 247–250 (1997).

    Article  Google Scholar 

  • 58.

    Pedgley, D. E., Reynolds, D. R. & Tatchell, G. M. Long-range insect migration in relation to climate and weather: Africa and Europe. in Insect Migration: Tracking Resources Through Space and Time (eds. Drake, V. A. & Gatehouse, A. G.) 3–30 (Cambridge University Press, Cambridge, 1995).

  • 59.

    Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 60.

    Persistence in the Sahel. Huestis, D. L. & Lehmann, T. Ecophysiology of Anopheles gambiae s.l. Infect. Genet. Evol. 28, 648–661 (2014).

    Article  Google Scholar 

  • 61.

    Yaro, A. S. et al. Dry season reproductive depression of Anopheles gambiae in the Sahel. J. Insect Physiol. 58, 1050–1059 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Krajacich, B. J. et al. Induction of long-lived potential aestivation states in laboratory An. gambiae mosquitoes. bioRxiv (2020). https://doi.org/10.1101/2020.04.14.031799

  • 63.

    della Torre, A. et al. Speciation within Anopheles gambiae–the glass is half full. Science (80-. ). 298, 115–117 (2002).

  • 64.

    della Torre, A., Tu, Z. & Petrarca, V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem. Mol. Biol. 35, 755–769 (2005).

  • 65.

    Neafsey, D. E. et al. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science (80-. ). 347, 1258522 (2015).

  • 66.

    Chapman, J. W. et al. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science (80-. ). 327, 682–685 (2010).

  • 67.

    Lehmann, T. et al. Aestivation of the African Malaria Mosquito, Anopheles gambiae in the Sahel. Am. J. Trop. Med. Hyg. 83, 601–606 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Huestis, D. L. et al. Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel. J Exp Biol 215, 2013–2021 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Lehmann, T. et al. Tracing the origin of the early wet-season Anopheles coluzzii in the Sahel. Evol. Appl. 10, 704–717 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    ADS  PubMed  Article  Google Scholar 

  • 71.

    Taylor, L. R. Insect migration, flight periodicity and the Boundary Layer. J. Anim. Ecol. 43, 225–238 (1974).

    Article  Google Scholar 

  • 72.

    Chapman, J. W., Drake, V. A. & Reynolds, D. R. Recent insights from radar studies of insect flight. Annu. Rev. Entomol. 56, 337–356 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    SAS Inc., I. SAS for Windows Version 9.4. (2012).

  • 74.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).

    Google Scholar 


  • Source: Ecology - nature.com

    An antidote to “fast fashion”

    A holistic approach in herbicide resistance research and management: from resistance detection to sustainable weed control