in

A new method for isolating and analysing coccospheres within sediment

  • 1.

    Holligan, P. M. & Balch, W. M. From the Ocean to Cells: Coccolithophore Optics and Biogeochemistry BT: Particle Analysis in Oceanography. (ed. Demers, S.) 301–324 (Springer, Berlin, 1991).

  • 2.

    Wallich, G. C. Results of soundings in the North Atlantic. Ann. Mag. Nat. Hist. 6, 457–458. https://doi.org/10.1080/00222936008697369 (1860).

    Article  Google Scholar 

  • 3.

    Huxley, T. H. Appendix to Capt. Dayman’s Admiralty Report ‘Deep-Sea Soundings in the N. Atlantic Ocean made in H.M.S Cyclops’. (1858).

  • 4.

    Young, J. R., Geisen, M. & Probert, I. A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology https://doi.org/10.2113/gsmicropal.51.4.267 (2005).

    Article  Google Scholar 

  • 5.

    Honjo, S. Coccoliths: production, transport and sedimentation. Mar. Micropaleontol. 1, 65–79. https://doi.org/10.1016/0377-8398(76)90005-0 (1976).

    ADS  Article  Google Scholar 

  • 6.

    O’Dea, S. A. et al. Coccolithophore calcification response to past ocean acidification and climate change. Nat. Commun. https://doi.org/10.1038/ncomms6363 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Bown, P. R., Gibbs, S. J., Sheward, R., O’Dea, S. & Higgins, D. Searching for cells: the potential of fossil coccospheres in coccolithophore research. J. Nannoplankt. Res. 1, 5 (2014).

    Google Scholar 

  • 8.

    Chisholm, S. W. Phytoplankton Size. in Primary Productivity and Biogeochemical Cycles in the Sea 213–237 (1992).

  • 9.

    Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137. https://doi.org/10.1093/plankt/fbp098 (2010).

    CAS  Article  Google Scholar 

  • 10.

    Gibbs, S. J. et al. Species-specific growth response of coccolithophores to Palaeocene – Eocene environmental change. Nat. Geosci. 6, 218–222. https://doi.org/10.1038/ngeo1719 (2013).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Gibbs, S. J., Sheward, R. M., Bown, P. R., Poulton, A. J. & Alvarez, S. A. Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene – Eocene Thermal Maximum. Philos. Trans. A https://doi.org/10.1098/rsta.2017.0075 (2018).

    Article  Google Scholar 

  • 12.

    Deuser, W. G., Ross, E. H., Hemleben, C. & Spindler, M. Seasonal changes in species composition, numbers, mass, size, and isotopic composition of planktonic foraminifera settline into the Deep Sargasso Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33, 103–127. https://doi.org/10.1016/0031-0182(81)90034-1 (1981).

    Article  Google Scholar 

  • 13.

    Braun, A., Chen, J., Waloszek, D. & Maas, A. First early Cambrian Radiolaria. The rise and fall of the Ediacaran. Biota 286, 143–149. https://doi.org/10.1144/SP286.10 (2007).

    Article  Google Scholar 

  • 14.

    Witkowski, J., Harwood, D. M. & Chin, K. Taxonomic composition, paleoecology and biostratigraphy of late cretaceous diatoms from Devon Island, Nunavut. Can. High Arctic. Cretac. Res. 32, 277–300. https://doi.org/10.1016/j.cretres.2010.12.009 (2011).

    Article  Google Scholar 

  • 15.

    Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. https://doi.org/10.1038/ncomms10284 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Saavedra-pellitero, M., Baumann, K., Gallagher, S. J., Sagawa, T. & Tada, R. Paleoceanographic evolution of the Japan Sea over the last 460 kyr: a coccolithophore perspective. Mar. Micropaleontol. https://doi.org/10.1016/j.marmicro.2019.01.001 (2019).

    Article  Google Scholar 

  • 17.

    Beaufort, L. & Heussner, S. Seasonal dynamics of calcareous nannoplankton on a West European continental margin: the Bay of Biscay. Mar. Micropaleontol. 43, 27–55. https://doi.org/10.1016/S0377-8398(01)00020-2 (2001).

    ADS  Article  Google Scholar 

  • 18.

    Bendif, E. M. et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat. Commun. https://doi.org/10.1038/s41467-019-12169-7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Bown, P. R. Paleocene calcareous nannofossils from Tanzania. J. Nannoplankt. Res. 36, 1–32 (2016).

    Google Scholar 

  • 20.

    Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C. & Bybell, L. M. Shelf and open-ocean calcareous phytoplankton assemblages across the paleocene-eocene thermal maximum: implications for global productivity gradients. Geology 34, 233–236. https://doi.org/10.1130/G22381.1 (2006).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Pearson, P. N. et al. Paleogene and Cretaceous sediment cores from the Kilwa and Lindi areas of coastal Tanzania: Tanzania Drilling Project Sites 1–5. J. Afr. Earth Sci. 39, 25–62. https://doi.org/10.1016/j.jafrearsci.2004.05.001 (2004).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Dunkley Jones, T., Bown, P. R. & Pearson, P. N. Exceptionally well preserved upper Eocene to lower Oligocene calcareous nannofossils (Prymnesiophyceae) from the Pande Formation (Kilwa Group), Tanzania. J. Syst. Palaeontol. 7, 359–411. https://doi.org/10.1017/S1477201909990010 (2009).

    Article  Google Scholar 

  • 23.

    Bown, P. R., Dunkley Jones, T., Young, J. R. & Randell, R. A Palaeogene record of extant lower photic zone calcareous nannoplankton. Palaeontology 52, 457–469. https://doi.org/10.1111/j.1475-4983.2009.00853.x (2009).

    Article  Google Scholar 

  • 24.

    Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J. & Wilson, P. A. Nannoplankton extinction and origination across the paleocene-eocene thermal maximum. Earth Planet. Sci. Lett. 314, 1770–1773. https://doi.org/10.1126/science.1133902 (2006).

    CAS  Article  Google Scholar 

  • 25.

    Gibbs, S. J., Stoll, H. M., Bown, P. R. & Bralower, T. J. Ocean acidification and surface water carbonate production across the Paleocene-Eocene thermal maximum. Earth Planet. Sci. Lett. 295, 583–592. https://doi.org/10.1016/j.epsl.2010.04.044 (2010).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Halloran, P., Rust, N. & Rickaby, R. E. M. Isolating coccoliths from sediment for geochemical analysis. Geochem. Geophys. Geosyst. 10, 1–8. https://doi.org/10.1029/2008GC002228 (2009).

    CAS  Article  Google Scholar 

  • 27.

    Beaufort, L. & Dollfus, D. Automatic recognition of coccoliths by dynamical neural networks. Mar. Micropaleontol. 51, 57–73. https://doi.org/10.1016/j.marmicro.2003.09.003 (2004).

    ADS  Article  Google Scholar 

  • 28.

    Hildebrand, M. et al. Applications of imaging flow cytometry for microalgae. Imaging Flow Cytom. 1, 47–67. https://doi.org/10.1007/978-1-4939-3302-0_4 (2016).

    Article  Google Scholar 

  • 29.

    Dashkova, V., Malashenkov, D., Poulton, N., Vorobjev, I. & Barteneva, N. S. Imaging flow cytometry for phytoplankton analysis. Methods 112, 188–200. https://doi.org/10.1016/j.ymeth.2016.05.007 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Dunker, S. Hidden secrets behind dots: improved phytoplankton taxonomic resolution using high-throughput imaging flow cytometry. Cytom. Part A 95, 854–868. https://doi.org/10.1002/cyto.a.23870 (2019).

    Article  Google Scholar 

  • 31.

    Beaufort, L. weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology 51, 289–297. https://doi.org/10.2113/gsmicropal.51.4.289 (2005).

    Article  Google Scholar 

  • 32.

    Henderiks, J. & Pagani, M. (Table S2) Mean coccosphere diameter, cell diameter and coccolith size of fossilized reticulofenestrid coccospheres from DSDP Site 72–516. PANGAEA https://doi.org/10.1594/PANGAEA.833085 (2007).

    Article  Google Scholar 

  • 33.

    Bown, P. Biometric data illustrating species-specific growth response of coccolithophores to Palaeocene-Eocene environmental change (NERC Grant NE_H017291_1). NERC Data Catalogue http://data.bgs.ac.uk/id/dataHolding/13607273 (2018).

  • 34.

    Schlüter, L. et al. Experiment: adaptation of a globally important coccolithophore to ocean warming and acidification. PANGAEA https://doi.org/10.1594/PANGAEA.835341 (2014).

    Article  Google Scholar 

  • 35.

    Sheward, R. M., Poulton, A. J., Gibbs, S. J., Daniels, C. J. & Bown, P. R. Coccosphere geometry measurements from culture experiments on the coccolithophore species Calcidiscus leptoporus, Calcidiscus quadriperforatus and Helicosphaera carteri. PANAGEA https://doi.org/10.1594/PANGAEA.865403 (2016).

    Article  Google Scholar 

  • 36.

    Young, J. R. et al. A guide to extant coccolithophore taxonomy. J. Nannoplankt. Res. 1, 10 (2003).

    Google Scholar 

  • 37.

    Jordan, R. W., Kleijine, A., Heimdal, B. R. & Green, J. C. A glossary of the extant Haptophyta of the world. J. Mar. Biol. Assoc. UK 75, 769–814. https://doi.org/10.1017/S0025315400038169 (1995).

    Article  Google Scholar 

  • 38.

    Young, J. R. & Henriksen, K. Biomineralization within vesicles: the calcite of coccoliths. Rev. Mineral. Geochem. 54, 189–215. https://doi.org/10.2113/0540189 (2003).

    CAS  Article  Google Scholar 

  • 39.

    Young, J. R., Didymus, J. M., Bown, P. R., Prins, B. & Mann, S. Crystal assembly and phylogenetic evolution in heterococcoliths. Nature 359, 710–713. https://doi.org/10.1038/356516a0 (1992).

    Article  Google Scholar 

  • 40.

    Iglesias-Rodriguez, M. D. et al. Phytoplankton calcification in a high-CO2 world. Science 320, 336–340. https://doi.org/10.1126/science.1154122 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 41.

    Stoll, H. et al. Insights on coccolith chemistry from a new ion probe method for analysis of individually picked coccoliths. Geochem. Geophys. Geosyst. 8, 1–8. https://doi.org/10.1029/2006GC001546 (2007).

    CAS  Article  Google Scholar 

  • 42.

    Henderiks, J. & Pagani, M. Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone-based pCO2 records. Paleoceanography 22, 1–12. https://doi.org/10.1029/2006PA001399 (2007).

    Article  Google Scholar 

  • 43.

    Henderiks, J. & Pagani, M. Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth Planet. Sci. Lett. 269, 575–583. https://doi.org/10.1016/j.epsl.2008.03.016 (2008).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Šupraha, L. & Henderiks, J. A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaeraand its biogeochemical implications. Biogeosciences 17, 2955–2969. https://doi.org/10.5194/bg-17-2955-2020 (2020).

    ADS  Article  Google Scholar 

  • 45.

    Hannisdal, B., Henderiks, J. & Liow, L. H. Long-term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2. Glob. Chang. Biol. 18, 3504–3516. https://doi.org/10.1111/gcb.12007 (2012).

    ADS  Article  Google Scholar 

  • 46.

    Urbanek, A. Biotic crises in the history of Upper Silurian graptoloids: a Palaeobiological model. Hist. Biol. 7, 29–50. https://doi.org/10.1080/10292389309380442 (1993).

    Article  Google Scholar 

  • 47.

    Stanley, S. M. An explanation for Cope’s rule. Evolution 27, 1–26. https://doi.org/10.2307/2407115 (1973).

    Article  PubMed  Google Scholar 

  • 48.

    Langer, G., Nehrke, G., Probert, I., Ly, J. & Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6, 2637–2646. https://doi.org/10.5194/bg-6-2637-2009 (2009).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Langer, G. et al. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005GC001227 (2006).

    Article  Google Scholar 

  • 50.

    Zondervan, I., Rost, B. & Riebesell, U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. J. Exp. Mar. Biol. Ecol. 272, 55–70. https://doi.org/10.1016/S0022-0981(02)00037-0 (2002).

    CAS  Article  Google Scholar 

  • 51.

    Feng, Y. et al. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur. J. Phycol. 43, 87–98. https://doi.org/10.1080/09670260701664674 (2008).

    MathSciNet  CAS  Article  Google Scholar 

  • 52.

    Fiorini, S., Middelburg, J. J. & Gattuso, J. Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchra. Aquat. Microb. Ecol. 64, 221–232. https://doi.org/10.3354/ame01520 (2011).

    Article  Google Scholar 

  • 53.

    McClelland, H. L. O. et al. Calcification response of a key phytoplankton family to millennial-scale environmental change. Sci. Rep. https://doi.org/10.1038/srep34263 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Lohbeck, K. T., Riebesell, U. & Reusch, T. B. H. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351. https://doi.org/10.1038/ngeo1441 (2012).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Schlüter, L., Lohbeck, K. T., Gröger, J. P., Riebesell, U. & Reusch, T. B. H. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Sci. Adv. 2, 1–8. https://doi.org/10.1126/sciadv.1501660 (2016).

    CAS  Article  Google Scholar 

  • 56.

    Ziveri, P. et al. Stable isotope ‘vital effects’ in coccolith calcite. Earth Planet. Sci. Lett. 210, 137–149. https://doi.org/10.1016/S0012-821X(03)00101-8 (2003).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Stoll, H. M. & Schrag, D. P. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate. Geochem. Geophys. Geosyst. https://doi.org/10.1029/1999GC000015 (2000).

    Article  Google Scholar 

  • 58.

    Stoll, H. M. & Ziveri, P. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity. Mar. Micropaleontol. 46, 209–221. https://doi.org/10.1016/s0377-8398(02)00040-3 (2002).

    ADS  Article  Google Scholar 

  • 59.

    Stoll, H. M., Ziveri, P., Geisen, M., Probert, I. & Young, J. R. Potential and limitations of Sr/Ca ratios in coccolith carbonate: new perspectives from cultures and monospecific samples. Philos. Trans. R. Soc. A 360, 719–747. https://doi.org/10.1098/rsta.2001.0966 (2002).

    ADS  CAS  Article  Google Scholar 

  • 60.

    Rickaby, R. E., Bard, E., Sonzogni, C. & Rostek, F. Coccolith chemistry reveals secular variations in the global ocean carbon cycle?. Earth Planet. Sci. Lett. 253, 83–95. https://doi.org/10.1016/j.epsl.2006.10.016 (2007).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Bolton, C. T., Stoll, H. M. & Mendez-Vicente, A. Vital effects in coccolith calcite: cenozoic climate-pCO2 drove the diversity of carbon acquisition strategies in coccolithophores?. Paleoceanography https://doi.org/10.1029/2012PA002339 (2012).

    Article  Google Scholar 

  • 62.

    Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562. https://doi.org/10.1038/nature12448 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 63.

    Rickaby, R., Henderiks, J. & Young, J. Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Clim. Past 6, 771–785. https://doi.org/10.5194/cp-6-771-2010 (2010).

    Article  Google Scholar 

  • 64.

    Andruleit, H., Rogalla, U. & Stable, S. S. From living communities to fossil assemblages: origin and fate of coccolithophores in the Northern Arabian Sea. Micropaleontology 50, 5–21. https://doi.org/10.2113/50.Suppl_1.5 (2004).

    Article  Google Scholar 

  • 65.

    Maguire, O., Collins, C., O’Loughlin, K., Miecznikowski, J. & Minderman, H. Quantifying nuclear p65 as a parameter for NF-κB activation: correlation between imagestream cytometry microscopy and western blot. Cytom. A 79, 461–469. https://doi.org/10.1002/cyto.a.21068 (2011).

    CAS  Article  Google Scholar 

  • 66.

    Prentice, K. et al. Trace metal (Mg/Ca and Sr/Ca) analyses of single coccoliths by secondary ion mass spectrometry. Geochim. Cosmochim. Acta 146, 90–106. https://doi.org/10.1016/j.gca.2014.09.041 (2014).

    ADS  CAS  Article  Google Scholar 

  • 67.

    Beaufort, L. Weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology https://doi.org/10.2113/gsmicropal.51.4.289 (2005).

    Article  Google Scholar 

  • 68.

    von Dassow, P., van den Engh, G., Iglesias-Rodriguez, D. & Gittins, J. R. Calcification state of coccolithophores can be assessed by light scatter depolarization measurements with flow cytometry. J. Plankton Res. 34, 1011–1027. https://doi.org/10.1093/plankt/fbs061 (2012).

    CAS  Article  Google Scholar 

  • 69.

    Balch, W. M., Kilpatrick, K., Holligan, P. M. & Cucci, T. Coccolith production and detachment by Emiliania Huxleyi (Prymnesiophyceae). J. Phycol. 29, 566–573. https://doi.org/10.1111/j.0022-3646.1993.00566.x (1993).

    Article  Google Scholar 

  • 70.

    Spooner, P. T. et al. Exceptional 20th century ocean circulation in the Northeast Atlantic. Geophys. Res. Lett. https://doi.org/10.1029/2020GL087577 (2020).

    Article  Google Scholar 

  • 71.

    Halloran, P. R., Hall, I. R. & Rickaby, R. E. M. Evidence for a multi-species coccolith volume change over the past two centuries: understanding a potential ocean acidification response. Biogeosciences 5, 1651–1655. https://doi.org/10.5194/bg-5-1651-2008 (2008).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Interactions between coral propagules in aquarium and field conditions

    Population viability in a host-parasitoid system is mediated by interactions between population stage structure and life stage differential susceptibility to toxicants