in

Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population

  • 1.

    Garroway, C. J. et al. Fine-scale genetic structure in a wild bird population: The role of limited disperal and environmentally based selection as causal factors. Evolution 67, 3488–3500. https://doi.org/10.1111/evo.12121 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 2.

    Reudink, M. W. et al. Linking isotopes and panmixia: High within-colony variation in feather δ2H, δ13C, and δ15N across the range of the American White Pelican. PLoS ONE 11, e0150810. https://doi.org/10.1371/journal.pone.0150810 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 3.

    Ward, R. D., Skibinski, D. O. & Woodwark, M. Protein heterozygosity, protein structure, and taxonomic differentiation. In Evolutionary Biology, Vol. 26 (eds Hecht M.K., Wallace B., & Macintyre R.J.) 73–159 (Springer, New York, 1992).

  • 4.

    White, T. A., Fotherby, H. A., Stephens, P. A. & Hoelzel, A. R. Genetic panmixia and demographic dependence across the North Atlantic in the deep-sea fish, blue hake (Antimora rostrata). Heredity 106, 690–699. https://doi.org/10.1038/hdy.2010.108 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Mayr, E. Animal Species and Evolution. (Belknap Press of Harvard University Press, Cambridge, 1963).

  • 6.

    Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327. https://doi.org/10.1038/hdy.1997.46 (1997).

    Article  PubMed  Google Scholar 

  • 7.

    Küpper, C. et al. High gene flow on a continental scale in the polyandrous Kentish plover Charadrius alexandrinus. Mol. Ecol. 21, 5864–5879 (2012).

    Article  Google Scholar 

  • 8.

    Friesen, V. L., Burg, T. M. & McCoy, K. D. Mechanisms of population differentiation in seabirds. Mol. Ecol. 16, 1765–1785. https://doi.org/10.1111/j.1365-294X.2006.03197.x (2007).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Ibarguchi, G., Gaston, A. J. & Friesen, V. L. Philopatry, morphological divergence, and kin groups: Structuring in thick-billed murres Uria lomvia within a colony in Arctic Canada. J. Avian Biol. 42, 134–150. https://doi.org/10.1111/j.1600-048X.2010.05023.x (2011).

    Article  Google Scholar 

  • 10.

    Griesser, M. Referential calls signal predator behavior in a group-living bird species. Curr. Biol. 18, 69–73. https://doi.org/10.1016/j.cub.2007.11.069 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Innes, R. J. et al. Genetic relatedness and spatial associations of dusky-footed woodrats (Neotoma fuscipes). J. Mammal. 93, 439–446. https://doi.org/10.1644/11-mamm-a-171.1 (2012).

    Article  Google Scholar 

  • 13.

    Foerster, K., Valcu, M., Johnsen, A. & Kempenaers, B. A spatial genetic structure and effects of relatedness on mate choice in a wild bird population. Mol. Ecol. 15, 4555–4567. https://doi.org/10.1111/j.1365-294X.2006.03091.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Planes, S. & Fauvelot, C. Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56, 378–399. https://doi.org/10.1111/j.0014-3820.2002.tb01348.x (2002).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Hendry, A. P. & Day, T. Population structure attributable to reproductive time: Isolation by time and adaptation by time. Mol. Ecol. 14, 901–916. https://doi.org/10.1111/j.1365-294X.2005.02480.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Ribolli, J. et al. Isolation-by-time population structure in potamodromous Dourado Salminus brasiliensis in southern Brazil. Conserv. Genet. 18, 67–76. https://doi.org/10.1007/s10592-016-0882-x (2017).

    Article  Google Scholar 

  • 17.

    Weis, A. E. & Kossler, T. M. Genetic variation in flowering time induces phenological assortative mating: Quantitative genetic methods applied to Brassica rapa. Am. J. Bot. 91, 825–836. https://doi.org/10.3732/ajb.91.6.825 (2004).

    Article  PubMed  Google Scholar 

  • 18.

    Coulson, M., Bradbury, I. & Bentzen, P. Temporal genetic differentiation: Continuous v. discontinuous spawning runs in anadromous rainbow smelt Osmerus mordax (Mitchill). J. Fish Biol. 69, 209–216 (2006).

    Article  Google Scholar 

  • 19.

    Woody, C. A., Olsen, J., Reynolds, J. & Bentzen, P. Temporal variation in phenotypic and genotypic traits in two sockeye salmon populations, Tustumena Lake, Alaska. Trans. Am. Fish. Soc. 129, 1031–1043 (2000).

    Article  Google Scholar 

  • 20.

    Cooley, J. R., Simon, C. & Marshall, D. C. Temporal separation and speciation in periodical cicadas. Bioscience 53, 151–157. https://doi.org/10.1641/0006-3568(2003)053[0151:TSASIP]2.0.CO;2 (2003).

    Article  Google Scholar 

  • 21.

    Rolshausen, G., Hobson, K. A. & Schaefer, H. M. Spring arrival along a migratory divide of sympatric blackcaps (Sylvia atricapilla). Oecologia 162, 175–183. https://doi.org/10.1007/s00442-009-1445-3 (2009).

    ADS  Article  PubMed  Google Scholar 

  • 22.

    Friesen, V. L. et al. Sympatric speciation by allochrony in a seabird. Proc. Natl. Acad. Sci. U.S.A. 107, 18589–18594 (2007).

    ADS  Article  Google Scholar 

  • 23.

    Braga-Silva, A. & Galetti, P. M. Evidence of isolation by time in freshwater migratory fish Prochilodus costatus (Characiformes, Prochilodontidae). Hydrobiologia 765, 159–167. https://doi.org/10.1007/s10750-015-2409-8 (2016).

    Article  Google Scholar 

  • 24.

    Schreiber, E. & Burger, J. Biology of Marine Birds (CRC Press, Boca Raton, 2001).

    Google Scholar 

  • 25.

    Lawrence, H. A., Lyver, P. O. B. & Gleeson, D. M. Genetic panmixia in New Zealand’s Grey-faced Petrel: Implications for conservation and restoration. Emu 114, 249–258. https://doi.org/10.1071/MU13078 (2014).

    Article  Google Scholar 

  • 26.

    Cristofari, R. et al. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds. PLoS ONE 10, e0117981. https://doi.org/10.1371/journal.pone.0117981 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Avise, J. C., Nelson, W. S., Bowen, B. W. & Walker, D. Phylogeography of colonially nesting seabirds, with special reference to global matrilineal patterns in the sooty tern (Sterna fuscata). Mol. Ecol. 9, 1783–1792 (2000).

    CAS  Article  Google Scholar 

  • 28.

    Votier, S. C. & Sherley, R. B. Seabirds. Curr. Biol. 27, R448–R450. https://doi.org/10.1016/j.cub.2017.01.042 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Hughes, B. J., Martin, G. R., Giles, A. D. & Reynolds, S. J. Long-term population trends of Sooty Terns Onychoprion fuscatus: Implications for conservation status. Popul. Ecol. 59, 213–224. https://doi.org/10.1007/s10144-017-0588-z (2017).

    Article  Google Scholar 

  • 30.

    Reynolds, S. J. et al. Long-term dietary shift and population decline of a pelagic seabird—A health check on the tropical Atlantic?. Glob. Change Biol. 25, 1383–1394. https://doi.org/10.1111/gcb.14560 (2019).

    ADS  Article  Google Scholar 

  • 31.

    Schreiber, E. et al. In Birds of North America No. 665 (eds A Poole & F Gill) 1–32 (American Ornithologists’ Union, Washington, DC, 2002).

  • 32.

    Maxwell, S. M. & Morgan, L. E. Foraging of seabirds on pelagic fishes: Implications for management of pelagic marine protected areas. Mar. Ecol. Prog. Ser. 481, 289–303 (2013).

    ADS  Article  Google Scholar 

  • 33.

    Ashmole, N. P. The biology of the Wideawake or Sooty Tern Sterna fuscata on Ascension Island. Ibis 103b, 297–351 (1963).

    Article  Google Scholar 

  • 34.

    Hughes, B. J., Martin, G. R. & Reynolds, S. J. Cats and seabirds: Effects of feral Domestic Cat Felis silvestris catus eradication on the population of Sooty Terns Onychoprion fuscata on Ascension Island, South Atlantic. Ibis 150, 122–131. https://doi.org/10.1111/j.1474-919X.2008.00838.x (2008).

    Article  Google Scholar 

  • 35.

    ArcGIS Desktop: Release 10.2 (Environmental Systems Research Institute, Redlands, CA, USA, 2013).

  • 36.

    Garrett, L. J., Dawson, D. A., Horsburgh, G. J. & Reynolds, S. J. A multiplex marker set for microsatellite typing and sexing of sooty terns Onychoprion fuscatus. BMC Res. Notes 10, 756 (2017).

    Article  Google Scholar 

  • 37.

    Dawson, D. A. Genomic analysis of passerine birds using conserved microsatellite loci. PhD thesis, University of Sheffield, UK, (2007).

  • 38.

    Dawson, D. A., dos Remedios, N. & Horsburgh, G. J. A new marker based on the avian spindlin gene that is able to sex most birds, including species problematic to sex with CHD markers. Zoo Biol. 35, 533–545. https://doi.org/10.1002/zoo.21326 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 39.

    Rousset, F. GENEPOP ’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).

    Article  PubMed  Google Scholar 

  • 40.

    Anderson, C. A. et al. Data quality control in genetic case-control association studies. Nat. Protoc. 5, 1564–1573. https://doi.org/10.1038/nprot.2010.116 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    de Jager, D., Swarts, P., Harper, C. & Bloomer, P. Friends and family: A software program for identification of unrelated individuals from molecular marker data. Mol. Ecol. Resour. 17, e225–e233. https://doi.org/10.1111/1755-0998.12691 (2017).

    Article  PubMed  Google Scholar 

  • 42.

    Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: Increasing your power. Oikos 108, 643–647. https://doi.org/10.1111/j.0030-1299.2005.13727.x (2005).

    Article  Google Scholar 

  • 43.

    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x (2007).

    Article  PubMed  Google Scholar 

  • 44.

    Torati, L. S. et al. Genetic diversity and structure in Arapaima gigas populations from Amazon and Araguaia-Tocantins river basins. BMC Genet. 20, 13. https://doi.org/10.1186/s12863-018-0711-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Bonin, A. et al. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x (2004).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Johnson, P. C. D. & Haydon, D. T. Software for quantifying and simulating microsatellite genotyping error. Bioinform. Biol. Insights 1, 71–75 (2007).

    Article  Google Scholar 

  • 47.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Earl, D. A. & von Holdt, B. M. Structure harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).

    Article  Google Scholar 

  • 50.

    Pew, J., Muir, P. H., Wang, J. & Frasier, T. R. Related: An R package for analysing pairwise relatedness from codominant molecular markers. Mol. Ecol. Resour. 15, 557–561. https://doi.org/10.1111/1755-0998.12323 (2015).

    Article  PubMed  Google Scholar 

  • 51.

    Wang, J. An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175–185. https://doi.org/10.1017/S0016672300033620 (1996).

    Article  Google Scholar 

  • 53.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18. https://doi.org/10.1111/j.1755-0998.2010.02927.x (2011).

    Article  PubMed  Google Scholar 

  • 55.

    Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).

    Article  Google Scholar 

  • 56.

    Smouse, P. E., Peakall, R. O. D. & Gonzales, E. V. A. A heterogeneity test for fine-scale genetic structure. Mol. Ecol. 17, 3389–3400. https://doi.org/10.1111/j.1365-294X.2008.03839.x (2008).

    Article  PubMed  Google Scholar 

  • 57.

    Banks, S. C. & Peakall, R. O. D. Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol. Ecol. 21, 2092–2105. https://doi.org/10.1111/j.1365-294X.2012.05485.x (2012).

    Article  PubMed  Google Scholar 

  • 58.

    Jacob, G., Prévot, A.-C. & Baudry, E. Feral Pigeons (Columba livia) prefer genetically similar mates despite inbreeding depression. PLoS ONE 11, e0162451. https://doi.org/10.1371/journal.pone.0162451 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Double, M. C., Peakall, R., Beck, N. R. & Cockburn, A. Dispersal, philopatry, and infidelity: Dissecting local genetic structure in superb fairy-wren (Malurus cyaneus). Evolution 59, 625–635. https://doi.org/10.1111/j.0014-3820.2005.tb01021.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 60.

    R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ (2019).

  • 61.

    rcompanion: Functions to support extension education program evaluation (2017).

  • 62.

    Bicknell, A. W. J. et al. Population genetic structure and long-distance dispersal among seabird populations: Implications for colony persistence. Mol. Ecol. 21, 2863–2876. https://doi.org/10.1111/j.1365-294X.2012.05558.x (2012).

    CAS  Article  PubMed  Google Scholar 

  • 63.

    Palestis, B. G. The role of behaviour in tern conservation. Curr. Zool. 60, 500–514 (2014).

    Article  Google Scholar 

  • 64.

    Lebreton, J. D., Hines, J. E., Pradel, R., Nichols, J. D. & Spendelow, J. A. Estimation by capture-recapture of recruitment and dispersal over several sites. Oikos 101, 253–264. https://doi.org/10.1034/j.1600-0706.2003.11848.x (2003).

    Article  Google Scholar 

  • 65.

    Bicknell, A. W. J. et al. Intercolony movement of pre-breeding seabirds over oceanic scales: Implications of cryptic age-classes for conservation and metapopulation dynamics. Divers. Distrib. 20, 160–168. https://doi.org/10.1111/ddi.12137 (2014).

    Article  Google Scholar 

  • 66.

    Hughes, B. J., Martin, G. R. & Reynolds, S. J. Sooty Terns Onychoprion fuscatus on Ascension Island in the south Atlantic are a reproductively isolated population. Revista Brasileira de Ornitologia 18, 194–198 (2010).

    Google Scholar 

  • 67.

    Robertson, W. B. Jr. Transatlantic migration of juvenile sooty terns. Nature 223, 632–634 (1969).

    ADS  Article  Google Scholar 

  • 68.

    Peck, D. R. & Congdon, B. C. Reconciling historical processes and population structure in the sooty tern Sterna fuscata. J. Avian Biol. 35, 327–335 (2004).

    Article  Google Scholar 

  • 69.

    Conradt, L. & Roper, T. J. Deciding group movements: Where and when to go. Behav. Proc. 84, 675–677. https://doi.org/10.1016/j.beproc.2010.03.005 (2010).

    Article  Google Scholar 

  • 70.

    Sonsthagen, S. A., Talbot, S. L., Lanctot, R. B. & McCracken, K. G. Do common eiders nest in kin groups? Microgeographic genetic structure in a philopatric sea duck. Mol. Ecol. 19, 647–657. https://doi.org/10.1111/j.1365-294X.2009.04495.x (2010).

    Article  PubMed  Google Scholar 

  • 71.

    Hatchwell, B. J. Cryptic kin selection: Kin structure in vertebrate populations and opportunities for kin-directed cooperation. Ethology 116, 203–216. https://doi.org/10.1111/j.1439-0310.2009.01732.x (2010).

    Article  Google Scholar 

  • 72.

    Péron, G. et al. Capture–recapture models with heterogeneity to study survival senescence in the wild. Oikos 119, 524–532. https://doi.org/10.1111/j.1600-1706.2009.17882.x (2010).

    Article  Google Scholar 

  • 73.

    Prince, P. A., Rothery, P., Croxall, J. P. & Wood, A. G. Population dynamics of Black-browed and Grey-headed Albatrosses Diomedea melanophris and D. chrysostoma at Bird Island, South Georgia. Ibis 136, 50–71. https://doi.org/10.1111/j.1474-919X.1994.tb08131.x (1994).

    Article  Google Scholar 

  • 74.

    Monteiro, L. R. & Furness, R. W. Speciation through temporal segregation of Madeiran storm petrel (Oceanodroma castro) populations in the Azores?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 945–953. https://doi.org/10.1098/rstb.1998.0259 (1998).

    Article  PubMed Central  Google Scholar 

  • 75.

    Dobson, F. S., Becker, P. H., Arnaud, C. M., Bouwhuis, S. & Charmantier, A. Plasticity results in delayed breeding in a long-distant migrant seabird. Ecol. Evol. 7, 3100–3109. https://doi.org/10.1002/ece3.2777 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 76.

    Casagrande, S., Dell’Omo, G., Costantini, D. & Tagliavini, J. Genetic differences between early-and late-breeding Eurasian kestrels. Evol. Ecol. Res. 8, 1029–1038 (2006).

    Google Scholar 

  • 77.

    Danchin, É., Giraldeau, L.-A., Valone, T. J. & Wagner, R. H. Public information: From nosy neighbors to cultural evolution. Science 305, 487–491. https://doi.org/10.1126/science.1098254 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 78.

    Boulinier, T., McCoy, K. D., Yoccoz, N. G., Gasparini, J. & Tveraa, T. Public information affects breeding dispersal in a colonial bird: Kittiwakes cue on neighbours. Biol. Lett. 4, 538–540. https://doi.org/10.1098/rsbl.2008.0291 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • 79.

    Francesiaz, C. et al. Familiarity drives social philopatry in an obligate colonial breeder with weak interannual breeding-site fidelity. Anim. Behav. 124, 125–133. https://doi.org/10.1016/j.anbehav.2016.12.011 (2017).

    Article  Google Scholar 

  • 80.

    Reusch, T. B., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. U.S.A. 102, 2826–2831. https://doi.org/10.1073/pnas.0500008102 (2005).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 81.

    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86. https://doi.org/10.1126/science.aan4380 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 82.

    Durant, J. M., Krasnov, Y. V., Nikolaeva, N. G. & Stenseth, N. C. Within and between species competition in a seabird community: Statistical exploration and modeling of time-series data. Oecologia 169, 685–694. https://doi.org/10.1007/s00442-011-2226-3 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 83.

    Cury, P. M. et al. Global seabird response to forage fish depletion—One-third for the birds. Science 334, 1703–1706. https://doi.org/10.1126/science.1212928 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 84.

    Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950–2010. PLoS ONE 10, e0129342. https://doi.org/10.1371/journal.pone.0129342 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 85.

    Feare, C. J. & Lesperance, C. Intra- and inter-colony movements of breeding adult Sooty Terns in Seychelles. Waterbirds 25, 52–55. https://doi.org/10.1675/1524-4695(2002)025[0052:IAIMOB]2.0.CO;2 (2002).

    Article  Google Scholar 

  • 86.

    Grémillet, D. & Boulinier, T. Spatial ecology and conservation of seabirds facing global climate change: A review. Mar. Ecol. Prog. Ser. 391, 121–137. https://doi.org/10.3354/meps08212 (2009).

    ADS  Article  Google Scholar 

  • 87.

    Colchero, F., Bass, O. L., Zambrano, R. & Gore, J. A. Clustered nesting and vegetation thresholds reduce egg predation in Sooty Terns. Waterbirds 33, 169–178. https://doi.org/10.1675/063.033.0205 (2010).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Interactions between coral propagules in aquarium and field conditions

    Population viability in a host-parasitoid system is mediated by interactions between population stage structure and life stage differential susceptibility to toxicants