in

The dehydrins gene expression differs across ecotypes in Norway spruce and relates to weather fluctuations

  • 1.

    Oleksyn, J., Modrzýnski, J., Tjoelker, M. G., Reich, P. B. & Karolewski, P. Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Funct. ecol. 12(4), 573–590 (1998).

    Article  Google Scholar 

  • 2.

    Jansson, G. et al. Norway spruce (Picea abies (L.) H. Karst.) Pâques L. (ed.) forest tree breeding in Europe. Manag. Ecosyst. 25, 123–176 (2013).

    Google Scholar 

  • 3.

    Müller-Starck, G., Baradat, Ph. & Bergmann, F. Genetic variation within European tree species. New For. 6(1–4), 23–47 (1992).

    Article  Google Scholar 

  • 4.

    Morgenstern, E. K. of tree ecotypes in Geographic Variation in Forest Trees: Genetic Basis and Application of Knowledge in Silviculture 109–115 (Vancouver, Amsterdam, 1996).

  • 5.

    Androsiuk, P. et al. Genetic status of Norway spruce (Picea abies) breeding populations for northern Sweden. Silvae Genet. 62(1–6), 127–136 (2013).

    Article  Google Scholar 

  • 6.

    Farjon, A. & Filer, D. Specific Adaptations in An atlas of the world’s conifers: An Analysis of Their Distribution, Biogeography, Diversity and Conservation Status (Springer, The Netherlands, 2013).

    Google Scholar 

  • 7.

    Chakraborty, D. et al. Selecting populations for non-analogous climate conditions using universal response functions: The case of Douglas-fir in central Europe. PLoS ONE 10(8), e0136357 (2015).

    Article  Google Scholar 

  • 8.

    van der Maaten-Theunissen, M., Kahle, H. P., & van der Maaten, E. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann. Sci. 70(2), 185–193 (2013).

  • 9.

    Trujillo-Moya, C. et al. Drought sensitivity of norway spruce at the species’ warmest fringe: Quantitative and molecular analysis reveals high genetic variation among and within provenances. G3 Genes Genom. Genet. g3, 300524 (2018).

    Google Scholar 

  • 10.

    Close, T. J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plantarum. 97(4), 795–803 (1996).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Campbell, S. A. & Close, T. J. Dehydrins: Genes, proteins, and associations with phenotypic traits. New Phytol. 137(1), 61–74 (1997).

    CAS  Article  Google Scholar 

  • 12.

    Yakovlev, I. A. et al. Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228(3), 459–472 (2008).

    MathSciNet  CAS  Article  Google Scholar 

  • 13.

    Eldhuset, T. D. et al. Drought affects tracheid structure, dehydrin expression, and above-and below ground growth in 5-year-old Norway spruce. Plant Soil 366(1–2), 305–320 (2013).

    CAS  Article  Google Scholar 

  • 14.

    Hara, M. The multifunctionality of dehydrins: An overview. Plant Signal. Behav. 5(5), 503–508 (2010).

    CAS  Article  Google Scholar 

  • 15.

    Graether, S. P. & Boddington, K. F. Disorder and function: A review of the dehydrin protein family. Front. Plant Sci. 5, 576 (2014).

    Article  Google Scholar 

  • 16.

    Hanin, M. et al. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signal. Behav. 6(10), 1503–1509 (2011).

    CAS  Article  Google Scholar 

  • 17.

    Kosová, K. et al. Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). J. Plant Physiol. 165(11), 1142–1151 (2008).

    Article  Google Scholar 

  • 18.

    Yamasaki, Y., Koehler, G., Blacklock, B. J. & Randall, S. K. Dehydrin expression in soybean. Plant Physiol. Biochem. 70, 213–220 (2013).

    CAS  Article  Google Scholar 

  • 19.

    Liu, H. et al. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 231, 198–211 (2015).

    CAS  Article  Google Scholar 

  • 20.

    Velasco-Conde, T., Yakovlev, I., Majada, J. P., Aranda, I. & Johnsen, Ø. Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet. Genomes. 8(5), 957–973 (2012).

    Article  Google Scholar 

  • 21.

    Stival Sena, J., Giguère, I., Rigault, P., Bousquet, J. & Mackay, J. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Tree Physiol. 38(3), 442–456 (2018).

    Article  Google Scholar 

  • 22.

    Šindelář J. of experimental plot in Klonové Archivy Smrku Ztepilého Picea abies Karst. na PLO Zbraslav-Strnady—Polesí Jíloviště (VÚLHM, 1975).

  • 23.

    Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5), e19379 (2011).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Yakovlev, I. A., Fossdal, C. G., Johnsen, O., Junttila, O. & Skrøppa, T. Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet. Genomes. 2(1), 39–52 (2006).

    Article  Google Scholar 

  • 25.

    Kjellsen, T. D., Yakovlev, I. A., Fossdal, C. G. & Strimbeck, G. R. Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata). Tree Physiol. 33(12), 1354–1366 (2013).

    CAS  Article  Google Scholar 

  • 26.

    R Core Team. R. A language and environment for statistical computing. Preprint at https://www.R-project.org/ (2018).

  • 27.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011).

    CAS  Article  Google Scholar 

  • 28.

    Jombart, T. & Ahmed, I. New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).

    CAS  Article  Google Scholar 

  • 29.

    Gömöry, D., Foffová, E., Kmeť, J., Longauer, R. & Romšáková, I. Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: Adaptation or acclimation?. Acta Biol. Cracov. Bot. 52(2), 42–49 (2010).

    Google Scholar 

  • 30.

    Cortleven, A. et al. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 42, 998–1018 (2019).

    CAS  Article  Google Scholar 

  • 31.

    Szabados, L. & Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 15, 89–97 (2010).

    CAS  Article  Google Scholar 

  • 32.

    Zulfiqar, F., Akram, N. A. & Ashraf, M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251, 3 (2020).

    CAS  Article  Google Scholar 

  • 33.

    Ciereszko, I. Regulatory roles of sugars in plant growth and development. Acta Soc. Bot. Pol. 87(2), 66 (2018).

    Article  Google Scholar 

  • 34.

    Rowland, L. J. & Arora, R. Proteins related to endodormancy (rest) in woody perennials. Plant Sci. 126(2), 119–144 (1997).

    CAS  Article  Google Scholar 

  • 35.

    Erez, A., Faust, M. & Line, M. J. Changes in water status in peach buds on induction, development and release from dormancy. Sci. Hortic. 73(2–3), 111–123 (1998).

    Article  Google Scholar 

  • 36.

    Kalberer, S. R., Wisniewski, M. & Arora, R. Deacclimation and reacclimation of cold-hardy plants: Current understanding and emerging concepts. Plant Sci. 171(1), 3–16 (2006).

    CAS  Article  Google Scholar 

  • 37.

    Welling, A., Moritz, T., Palva, E. T. & Junttila, O. Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol. 129(4), 1633–1641 (2002).

    CAS  Article  Google Scholar 

  • 38.

    Welling, A. et al. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J. Exp. Bot. 55(396), 507–516 (2004).

    CAS  Article  Google Scholar 

  • 39.

    Karlson, D. T., Zeng, Y., Stirm, V. E., Joly, R. J. & Ashworth, E. N. Photoperiodic regulation of a 24-kD dehydrin-like protein in red-osier dogwood (Cornus sericea L.) in relation to freeze-tolerance. Plant Cell Physiol. 44(1), 25–34 (2003).

    CAS  Article  Google Scholar 

  • 40.

    Carneros, E., Yakovlev, I., Viejo, M., Olsen, J. E. & Fossdal, C. G. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes. Planta 246(3), 553–566 (2017).

    CAS  Article  Google Scholar 

  • 41.

    Asante, D. K. et al. Gene expression changes during short day induced terminal bud formation in Norway spruce. Plant Cell Environ. 34(2), 332–346 (2011).

    CAS  Article  Google Scholar 

  • 42.

    Asante, D. K. et al. Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn. Plant Physiol. Bioch. 47(8), 681–689 (2009).

    CAS  Article  Google Scholar 

  • 43.

    Ruttink, T. et al. A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19(8), 2370–2390 (2007).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population

    Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation