in

Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird

  • 1.

    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science (80-) 366, eaar2016 (2019).

    CAS  Article  Google Scholar 

  • 3.

    Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. 108, 3047–3052 (2011).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Foster, J. A. & McVey Neufeld, K.-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Clarke, G. et al. The microbiome-gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. & Cryan, J. F. Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Hoban, A. E. et al. The microbiome regulates amygdala-dependent fear recall. Mol. Psychiatry 23, 1134–1144 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Magnusson, K. R. et al. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300, 128–140 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Ogbonnaya, E. S. et al. Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. Biol. Psychiat. 78, e7–e9 (2015).

    PubMed  Article  Google Scholar 

  • 10.

    Gareau, M. G. et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60, 307–317 (2011).

    PubMed  Article  Google Scholar 

  • 11.

    Stilling, R. M. et al. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut–brain axis?. Neurochem. Int. 99, 110–132 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Davidson, G. L., Raulo, A. & Knowles, S. C. L. Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.06.014 (2020).

    Article  PubMed  Google Scholar 

  • 13.

    Davidson, G. L., Cooke, A. C., Johnson, C. N. & Quinn, J. L. The gut microbiome as a driver of individual variation in cognition and functional behaviour. Philos. Trans. R. Soc. B Biol. https://doi.org/10.1098/rstb.2017.0286 (2018).

    Article  Google Scholar 

  • 14.

    Morand-Ferron, J., Cole, E. F. & Quinn, J. L. Studying the evolutionary ecology of cognition in the wild: a review of practical and conceptual challenges. Biol. Rev. 91, 367–389 (2016).

    PubMed  Article  Google Scholar 

  • 15.

    Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, Princeton, 2019).https://doi.org/10.2307/j.ctvs32s6b

    Google Scholar 

  • 16.

    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A. 107, 14691–14696 (2010).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Gillingham, M. A. F. et al. Offspring microbiomes differ across breeding sites in a panmictic species. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00035 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Costa, S., Lopes, I., Proença, D. N., Ribeiro, R. & Morais, P. V. Diversity of cutaneous microbiome of Pelophylax perezi populations inhabiting different environments. Sci. Total Environ. 572, 995–1004 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Knutie, S. A., Chaves, J. A. & Gotanda, K. M. Human activity can influence the gut microbiota of Darwin’s finches in the Galapagos Islands. Mol. Ecol. 28, 2441–2450 (2019).

    PubMed  Article  Google Scholar 

  • 20.

    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the Wild Black Howler Monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 21.

    Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Pan, D. & Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5, 108–119 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Teyssier, A. et al. Diet contributes to urban-induced alterations in gut microbiota: experimental evidence from a wild passerine. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.2182 (2020).

    Article  Google Scholar 

  • 26.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 27.

    Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Fava, F. et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int. J. Obes. 37, 216–223 (2013).

    CAS  Article  Google Scholar 

  • 29.

    Wu, G. D. et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65, 63–72 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Zimmer, J. et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur. J. Clin. Nutr. 66, 53–60 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. U. S. A. 116, 23588–23593 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Bolnick, et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).

    MathSciNet  PubMed  Article  Google Scholar 

  • 35.

    Li, W., Dowd, S. E., Scurlock, B., Acosta-Martinez, V. & Lyte, M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol. Behav. 96, 557–567 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Ezra-Nevo, G., Henriques, S. F. & Ribeiro, C. The diet-microbiome tango: how nutrients lead the gut brain axis. Curr. Opin. Neurobiol. 62, 122–132 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Psaltopoulou, T. et al. Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann. Neurol. 74, 580–591 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Carlson, A. L. et al. Infant gut microbiome associated with cognitive development. Biol. Psychiatry 83, 148–159 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Dunn, J. C., Cole, E. F. & Quinn, J. L. Personality and parasites: Sex-dependent associations between avian malaria infection and multiple behavioural traits. Behav. Ecol. Sociobiol. 65, 1459–1471 (2011).

    Article  Google Scholar 

  • 40.

    Cole, E. F., Morand-Ferron, J., Hinks, A. E. & Quinn, J. L. Cognitive ability influences reproductive life history variation in the wild. Curr. Biol. 22, 1808–1812 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Seed, A. & Mayer, C. Problem Solving. in APA handbook of comparative psychology: Perception, learning, and cognition, Vol. 2 601–625 (American Psychological Association, 2017).

  • 42.

    Cole, E. F., Cram, D. L. & Quinn, J. L. Individual variation in spontaneous problem-solving performance among wild great tits. Anim. Behav. 81, 491–498 (2011).

    Article  Google Scholar 

  • 43.

    Morand-Ferron, J., Cole, E. F., Rawles, J. E. C. & Quinn, J. L. Who are the innovators? A field experiment with 2 passerine species. Behav. Ecol. 22, 1241–1248 (2011).

    Article  Google Scholar 

  • 44.

    Quinn, J. L., Cole, E. F., Reed, T. E. & Morand-Ferron, J. Environmental and genetic determinants of innovativeness in a natural population of birds. Philos. Trans. R. Soc. Biol. B Sci. 371, 20150184 (2016).

    Article  CAS  Google Scholar 

  • 45.

    Ducatez, S., Clavel, J. & Lefebvre, L. Ecological generalism and behavioural innovation in birds: technical intelligence or the simple incorporation of new foods?. J. Anim. Ecol. 84, 79–89 (2015).

    PubMed  Article  Google Scholar 

  • 46.

    Reader, S. M. & MacDonald, K. Environmental variability and primate behavioural flexibility. Anim. Innov. https://doi.org/10.1093/acprof:oso/9780198526223.003.0004 (2012).

    Article  Google Scholar 

  • 47.

    Biard, C. et al. Growing in cities: an urban penalty for wild birds? A study of phenotypic differences between urban and rural great tit chicks (Parus major). Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00079 (2017).

    Article  Google Scholar 

  • 48.

    Teyssier, A. et al. Inside the guts of the city: urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. 612, 1276–1286 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 49.

    Escallón, C., Belden, L. K. & Moore, I. T. The cloacal microbiome changes with the breeding season in a wild bird. Integr. Org. Biol. https://doi.org/10.1093/iob/oby009 (2019).

    Article  Google Scholar 

  • 50.

    Waite, D. W. & Taylor, M. W. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00223 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Knutie, S. A. Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species. J. Appl. Ecol. 57, 536–547 (2020).

    CAS  Article  Google Scholar 

  • 53.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Veľký, M., Kaňuch, P. & Krištín, A. Food composition of wintering great tits (Parus major): habitat and seasonal aspects. Folia Zool. 60, 228–236 (2011).

    Article  Google Scholar 

  • 55.

    Phillips, J. N., Berlow, M. & Derryberry, E. P. The effects of landscape urbanization on the gut microbiome: an exploration into the gut of urban and rural white-crowned Sparrows. Front. Ecol. Evol. 6, 148 (2018).

    Article  Google Scholar 

  • 56.

    Rosshart, S. P. et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171, 1015–1028 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Griffin, A. S. & Guez, D. Innovation and problem solving: a review of common mechanisms. Behav. Process. 109, 121–134 (2014).

    Article  Google Scholar 

  • 58.

    Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Maniscalco, J. W. & Rinaman, L. Vagal interoceptive modulation of motivated behavior. Physiology 33, 151–167 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Bruce-Keller, A. J. et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 77, 607–615 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Greyson-Gaito, C. J. et al. Into the wild: microbiome transplant studies need broader ecological reality. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.2834 (2020).

    Article  Google Scholar 

  • 62.

    Roager, H. M. & Dragsted, L. O. Diet-derived microbial metabolites in health and disease. Nutr. Bull. 44, 216–227 (2019).

    Article  Google Scholar 

  • 63.

    Möhle, L. et al. Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep. 15, 1945–1956 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 64.

    Cryan, J. F. et al. The microbiota-gut-dbrain axis. Physiol. Rev. 99, 1877–2013 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Heintz-Buschart, A. & Wilmes, P. Human gut microbiome: function matters. Trends Microbiol. 26, 563–574 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    O’Connor, R. J. Identification guide to European Passerines L. Svensson. Auk 102, (1985).

  • 67.

    Khan, G., Kangro, H. O., Coates, P. J. & Heath, R. B. Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. J. Clin. Pathol. 44, 360–365 (1991).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859) 133, 49–54 (1991).

    Article  Google Scholar 

  • 70.

    Serrano-Davies, E., O’Shea, W. & Quinn, J. L. Individual foraging preferences are linked to innovativeness and personality in the great tit. Behav. Ecol. Sociobiol. 71, 161 (2017).

    Article  Google Scholar 

  • 71.

    Aplin, L. M., Sheldon, B. C. & McElreath, R. Conformity does not perpetuate suboptimal traditions in a wild population of songbirds. Proc. Natl. Acad. Sci. U. S. A. 114, 7830–7837 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    O’Shea, W., Serrano-Davies, E. & Quinn, J. L. Do personality and innovativeness influence competitive ability? An experimental test in the great tit. Behav. Ecol. 28, 1435–1444 (2017).

    Article  Google Scholar 

  • 73.

    Shutt, J. D. et al. Gradients in richness and turnover of a forest passerine’s diet prior to breeding: a mixed model approach applied to faecal metabarcoding data. Mol. Ecol. 29, 1199–1213 (2020).

    PubMed  Article  Google Scholar 

  • 74.

    Crouch, N. M. A., Lynch, V. M. & Clarke, J. A. A re-evaluation of the chemical composition of avian urinary excreta. J. Ornithol. 161, 17–24 (2020).

    Article  Google Scholar 

  • 75.

    Fouhy, F. et al. Perinatal factors affect the gut microbiota up to four years after birth. Nat. Commun. 10, 1517 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 76.

    Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U. S. A. 102, 2567–2572 (2005).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. https://www.R-project.org/ (2014).

  • 79.

    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 80.

    Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife https://doi.org/10.7554/eLife.01102 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 81.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–7, https://CRAN.R-project.org/package=lme4. R Packag. version (2014).

  • 82.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).

    Article  Google Scholar 

  • 83.

    Zakrzewski, M. et al. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics https://doi.org/10.1093/bioinformatics/btw725 (2017).

    Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    The dehydrins gene expression differs across ecotypes in Norway spruce and relates to weather fluctuations

    Wild black bears harbor simple gut microbial communities with little difference between the jejunum and colon