in

Nutrients cause grassland biomass to outpace herbivory

  • 1.

    Running, S. W. A measurable planetary boundary for the biosphere. Science 337, 1458–1459 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12945 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783 (2014).

    ADS  Article  Google Scholar 

  • 4.

    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Del Grosso, S. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).

    PubMed  Article  Google Scholar 

  • 6.

    Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).

    CAS  Article  Google Scholar 

  • 7.

    Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).

    ADS  CAS  Article  Google Scholar 

  • 8.

    McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341, 142–144 (1989).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 9.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 10.

    White, R. P., Murray, S. & Rohweder, M. Pilot Analysis of Global Ecosystems (PAGE): Grassland Ecosystems, 70 (World Resources Institute, Washington, DC, 2000).

  • 11.

    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

  • 12.

    Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151 (Geneva, Switzerland, 2014).

  • 13.

    Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of earth’s nitrogen cycle. Science 330, 192–196 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Stevens, C. J. Nitrogen in the environment. Science 363, 578–580 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Stevens, C. J. et al. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology 96, 1459–1465 (2015).

    Article  Google Scholar 

  • 16.

    Reyer, C. P. O. et al. A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob. Change Biol. 19, 75–89 (2013).

    ADS  Article  Google Scholar 

  • 17.

    Knapp, A. K. et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience 58, 811–821 (2008).

    MathSciNet  Article  Google Scholar 

  • 18.

    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Knapp, A. K. & Seastedt, T. R. Detritus accumulation limits productivity of tallgrass prairie: the effects of its plant litter on ecosystem function make the tallgrass prairie unique among North American biomes. BioScience 36, 662–668 (1986).

    Article  Google Scholar 

  • 22.

    Volterra, V. Variations and fluctuations of the numbers of individuals in animal species living together. Nature 118, 558–560 (1926).

    ADS  Article  Google Scholar 

  • 23.

    Crawley, M. J. Herbivory: The Dynamics of Animal-Plant Interactions, Vol. 10, 437 (University of California Press, 1983).

  • 24.

    Oksanen, L. & Oksanen, T. The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat. 155, 703–723 (2000).

    PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Gruner, D. S. et al. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol. Lett. 11, 740–755 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Hillebrand, H. et al. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc. Natl Acad. Sci. USA 104, 10904–10909 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Worm, B., Lotze, H. K., Hillebrand, H. & Sommer, U. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417, 848–851 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Turkington, R. Top-down and bottom-up forces in mammalian herbivore – vegetation systems: an essay review. Botany 87, 723–739 (2009).

    Article  Google Scholar 

  • 29.

    DeAngelis, D. L. Dynamics of Nutrient Cycling and Food Webs (Chapman and Hall, London, 1992).

  • 30.

    Arditi, R. & Ginzburg, L. R. Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989).

    Article  Google Scholar 

  • 31.

    Chase, J. M., Leibold, M. A., Downing, A. L. & Shurin, J. B. The effects of productivity, herbivory, and plant species turnover in grassland food webs. Ecology 81, 2485–2497 (2000).

    Article  Google Scholar 

  • 32.

    Leibold, M. A. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am. Nat. 134, 922–949 (1989).

    Article  Google Scholar 

  • 33.

    Endara, M. J. & Coley, P. D. The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389–398 (2011).

    Article  Google Scholar 

  • 34.

    Milchunas, D. G. & Lauenroth, W. K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 63, 327–366 (1993).

    Article  Google Scholar 

  • 35.

    Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996).

    Article  Google Scholar 

  • 36.

    Murdoch, W. Community structure, population control, and competition – a critique. Am. Nat. 100, 219–226 (1966).

    Article  Google Scholar 

  • 37.

    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evolution 5, 65–73 (2014).

    Article  Google Scholar 

  • 38.

    Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).

  • 39.

    Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nat. Ecol. Evol. 2, 640–649 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Hillebrand, H. Top-down versus bottom-up control of autotrophic biomass – a meta-analysis on experiments with periphyton. J. North Am. Benthol. Soc. 21, 349–369 (2002).

    Article  Google Scholar 

  • 41.

    Frank, R. & Merle, L. F. Effects of annual applications of low N fertilizer rates on a mixed grass prairie. J. Range Manag. 36, 359–362 (1983).

    Article  Google Scholar 

  • 42.

    Olofsson, J. et al. Long-term experiments reveal strong interactions between lemmings and plants in the Fennoscandian highland tundra. Ecosystems 17, 606–615 (2014).

    Article  Google Scholar 

  • 43.

    Lemaire, G., Jeuffroy, M.-H. & Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: theory and practices for crop N management. Eur. J. Agron. 28, 614–624 (2008).

    CAS  Article  Google Scholar 

  • 44.

    Hillebrand, H. et al. Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecol. Lett. 12, 516–527 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Hempson, G. P., Illius, A. W., Hendricks, H. H., Bond, W. J. & Vetter, S. Herbivore population regulation and resource heterogeneity in a stochastic environment. Ecology 96, 2170–2180 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Sickman, J. O. et al. Quantifying atmospheric N deposition in dryland ecosystems: a test of the Integrated Total Nitrogen Input (ITNI) method. Sci. Total Environ. 646, 1253–1264 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Yahdjian, L., Gherardi, L. & Sala, O. E. Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. J. Arid Environ. 75, 675–680 (2011).

    ADS  Article  Google Scholar 

  • 48.

    Koerner, S. E. et al. Plant community response to loss of large herbivores differs between North American and South African savanna grasslands. Ecology 95, 808–816 (2014).

    PubMed  Article  Google Scholar 

  • 49.

    Frank, D. A., McNaughton, S. J. & Tracy, B. F. The ecology of the Earth’s grazing ecosystems: profound functional similarities exist between the Serengeti and Yellowstone. Bioscience 48, 513–521 (1998).

    Article  Google Scholar 

  • 50.

    Augustine, D. J. & McNaughton, S. J. Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9, 1242–1256 (2006).

    CAS  Article  Google Scholar 

  • 51.

    Ritchie, M. E., Tilman, D. & Knops, J. M. H. Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79, 165–177 (1998).

    Article  Google Scholar 

  • 52.

    Pastor, J., Dewey, B., Naiman, R. J., McInnes, P. F. & Cohen, Y. Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology 74, 467–480 (1993).

    Article  Google Scholar 

  • 53.

    Grellmann, D. Plant responses to fertilization and exclusion of grazers on an Arctic tundra heath. Oikos 98, 190–204 (2002).

    Article  Google Scholar 

  • 54.

    Hartley, S. E. & Mitchell, R. J. Manipulation of nutrients and grazing levels on heather moorland: changes in Calluna dominance and consequences for community composition. J. Ecol. 93, 990–1004 (2005).

    Article  Google Scholar 

  • 55.

    Lind, E. M. et al. Increased grassland arthropod production with mammalian herbivory and eutrophication: a test of mediation pathways. Ecology 98, 3022–3033 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 57.

    Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 126, 81–97 (2008).

    Article  Google Scholar 

  • 58.

    Dentener, F. J. Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993, and 2050. Oak Ridge National Laboratory Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/830 (2006).

  • 59.

    Borer, E. T. et al. Environmental Data Initiative https://doi.org/10.6073/pasta/a318fe0fb11eb43c1a2c8233b2e3494f (2020).


  • Source: Ecology - nature.com

    Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population

    Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation