in

Elevated temperature, but not decreased pH, impairs reproduction in a temperate fish

  • 1.

    Bögner, D. Life under climate change scenarios: sea urchins’ cellular mechanisms for reproductive success. J. Mar. Sci. Eng. 4, 28 (2016).

    Article  Google Scholar 

  • 2.

    Milazzo, M. et al. Ocean acidification affects fish spawning but not paternity at CO2 seeps. Proc. R. Soc. B Biol. Sci. 283, 20161021 (2016).

    Article  CAS  Google Scholar 

  • 3.

    Faria, A. M. et al. Reproductive trade-offs in a temperate reef fish under high pCO2 levels. Mar. Environ. Res. 137, 8–15 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Amundsen, T. Sex roles and sexual selection: lessons from a dynamic model system. Curr. Zool. 64, 363–392 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Borg, Å. A., Forsgren, E. & Amundsen, T. Seasonal change in female choice for male size in the two-spotted goby. Anim. Behav. 72, 763–771 (2006).

    Article  Google Scholar 

  • 6.

    Skolbekken, R. & Utne-Palm, A. C. Parental investment of male two-spotted goby, Gobiusculus flavescens (Fabricius). J. Exp. Mar. Biol. Ecol. 261, 137–157 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Utne-Palm, A. C., Eduard, K., Jensen, K. H., Mayer, I. & Jakobsen, P. J. Size dependent male reproductive tactic in the two-spotted goby (Gobiusculus flavescens). PLoS ONE 10, 1–23 (2015).

    Article  CAS  Google Scholar 

  • 8.

    Donelson, J., Munday, P., McCormick, M., Pankhurst, N. & Pankhurst, P. Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Mar. Ecol. Prog. Ser. 401, 233–243 (2010).

    ADS  Article  Google Scholar 

  • 9.

    Veilleux, H. D., Donelson, J. M. & Munday, P. L. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations. Conserv. Physiol. 6, 1–12 (2018).

    Article  CAS  Google Scholar 

  • 10.

    IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes. Climate Change 2014: Impacts, Adaptation, and vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014). https://doi.org/10.1016/j.renene.2009.11.012.

  • 11.

    Fabry, V. J., Seibel, B. A., Feely, R. A. & Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).

    CAS  Article  Google Scholar 

  • 12.

    Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Moser, S. C. et al. Coastal zone development and ecosystems. Clim. Chang. Impacts United States Third Natl. Clim. Assess. 579–618 (2014). https://doi.org/10.7930/J0MS3QNW.On.

  • 14.

    Donelson, J. M., Wong, M., Booth, D. J. & Munday, P. L. Transgenerational plasticity of reproduction depends on rate of warming across generations. Evol. Appl. 9, 1072–1081 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Philippart, C. J. M. et al. Climate-related changes in recruitment of the Bivalve Macoma balthica Bos Gerhard C. Cadée and Rob Dekker. 48, 2171–2185 (2003).

    Google Scholar 

  • 16.

    Miller, L. P., Matassa, C. M. & Trussell, G. C. Climate change enhances the negative effects of predation risk on an intermediate consumer. Glob. Change Biol. 20, 3834–3844 (2014).

    ADS  Article  Google Scholar 

  • 17.

    Pistevos, J. C. A., Nagelkerken, I., Rossi, T., Olmos, M. & Connell, S. D. Ocean acidification and global warming impair shark hunting behaviour and growth. Sci. Rep. 5, 1–10 (2015).

    Article  CAS  Google Scholar 

  • 18.

    Goldenberg, S. U. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nat. Clim. Change 8, 229–233 (2018).

    ADS  Article  Google Scholar 

  • 19.

    Welch, M. J. & Munday, P. L. Contrasting effects of ocean acidification on reproduction in reef fishes. Coral Reefs 35, 485–493 (2016).

    ADS  Article  Google Scholar 

  • 20.

    Miller, G. M., Watson, S.-A., McCormick, M. I. & Munday, P. L. Increased CO2 stimulates reproduction in a coral reef fish. Glob. Change Biol. 19, 3037–3045 (2013).

    ADS  Article  Google Scholar 

  • 21.

    Forsgren, E., Dupont, S., Jutfelt, F. & Amundsen, T. Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol. Evol. 3, 3637–3646 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: Pre-adaptation through lifestyle and ontogeny?. Biogeosciences 6, 2313–2331 (2009).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Gianguzza, P. et al. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2 -driven acidi fi cation. Mar. Environ. Res. 93, 70–77 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Domenici, P., Allan, B. J. M., Watson, S.-A., McCormick, M. I. & Munday, P. L. Shifting from right to left: the combined effect of elevated CO2 and temperature on behavioural lateralization in a coral reef fish. PLoS ONE 9, e87969 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Schram, J. B., Schoenrock, K. M., McClintock, J. B., Amsler, C. D. & Angus, R. A. Multiple stressor effects of near-future elevated seawater temperature and decreased pH on righting and escape behaviors of two common Antarctic gastropods. J. Exp. Mar. Biol. Ecol. 457, 90–96 (2014).

    Article  Google Scholar 

  • 27.

    Garzke, J., Hansen, T., Ismar, S. M. H. & Sommer, U. Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS ONE 11, e0155952 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Gobler, C. J., Merlo, L. R., Morrell, B. K. & Griffith, A. W. Temperature, acidification, and food supply interact to negatively affect the growth and survival of the forage fish, Menidia beryllina (Inland Silverside), and Cyprinodon variegatus (Sheepshead Minnow). Front. Mar. Sci. 5, 1–12 (2018).

    Article  Google Scholar 

  • 29.

    Sswat, M., Stiasny, M. H., Jutfelt, F., Riebesell, U. & Clemmesen, C. Growth performance and survival of larval Atlantic herring, under the combined effects of elevated temperatures and CO2. PLoS ONE https://doi.org/10.1371/journal.pone.0191947 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Miller, G. M., Kroon, F. J., Metcalfe, S. & Munday, P. L. Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecol. Appl. 25, 603–620 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Utne-Palm, A. C. Response of naïve two-spotted gobies Gobiusculus flavescens to visual and chemical stimuli of their natural predator, cod Gadus morhua. Mar. Ecol. Prog. Ser. 218, 267–274 (2001).

    ADS  Article  Google Scholar 

  • 32.

    Leo, E., Dahlke, F. T., Storch, D., Pörtner, H.-O. & Mark, F. C. Impact of ocean acidification and warming on the bioenergetics of developing eggs of Atlantic herring Clupea harengus. Conserv. Physiol. 6, coy050 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7 (2017).

    CAS  Article  Google Scholar 

  • 34.

    Dorey, N., Lançon, P., Thorndyke, M. & Dupont, S. Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob. Change Biol. 19, 3355–3367 (2013).

    Google Scholar 

  • 35.

    Magnhagen, C. et al. Context consistency and seasonal variation in boldness of male two-spotted gobies. PLoS ONE 9, e93354 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Torricelli, P., Lugli, M. & Gandolfi, G. A quantitative analysis of the fanning activity in the male Padogobius martensi (Pisces: Gobiidae). Behaviour 92, 288–301 (1985).

    Google Scholar 

  • 37.

    Kraak, S. B. M. Female preference and filial cannibalism in Aidablennius sphynx (Teleostei, Blenniidae); a combined field and laboratory study. Behav. Processes 36, 85–97 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Jan, M., Jan, U. & Shah, G. M. Studies on fecundity and Gonadosomatic index of Schizothorax plagiostomus (Cypriniformes: Cyprinidae). J. Threat. Taxa 6, 5375–5379 (2014).

    Article  Google Scholar 

  • 39.

    Forsgren, E., Amundsen, T., Borg, Å. A. & Bjelvenmark, J. Unusually dynamic sex roles in a fish. Nature 429, 551–554 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 40.

    Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30–32 (2012).

    ADS  Article  Google Scholar 

  • 41.

    Bernal, M. A. et al. Phenotypic and molecular consequences of step-wise temperature increase across generations in a coral reef fish. Mol. Ecol. https://doi.org/10.1111/mec.14884 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Hopkins, K., Moss, B. R. & Gill, A. B. Increased ambient temperature alters the parental care behaviour and reproductive success of the three-spined stickleback (Gasterosteus aculeatus). Environ. Biol. Fishes 90, 121–129 (2011).

    Article  Google Scholar 

  • 43.

    Stillman, J. H. Acclimation capacity underlies susceptibility to climate change. Science 301, 65 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Laubenstein, T. D., Rummer, J. L., McCormick, M. I. & Munday, P. L. A negative correlation between behavioural and physiological performance under ocean acidification and warming. Sci. Rep. 9, 1–10 (2019).

    CAS  Article  Google Scholar 

  • 45.

    Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to Best Practices for Ocean CO2 measurements. PICES Special Publication. Guide to Best Practices for Ocean CO2 measurements. PICES Special Publication 3, (2007).

  • 46.

    Lewis, E. & Wallace, D. Program developed for CO2 system calculations. Ornl/Cdiac 105, 1–21 (1998).

    Google Scholar 

  • 47.

    Lissåker, M. & Kvarnemo, C. Ventilation or nest defense—parental care trade-offs in a fish with male care. Behav. Ecol. Sociobiol. 60, 864–873 (2006).

    Article  Google Scholar 

  • 48.

    Baklow, G. W. Ethology of the Asian Teleost Badis badis. V. dynamics of fanning and other parental activities, with comments on the behavior of the larvae and Postlarvae 2, 3. Z. Tierpsychol. 21, 99–123 (1964).

    Google Scholar 

  • 49.

    Blumer, L. S. Male parental care in the bony fishes. Q. Rev. Biol. 54, 149–161 (1979).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean

    An escape route for seafloor methane