in

Trophic ecology, habitat, and migratory behaviour of the viperfish Chauliodus sloani reveal a key mesopelagic player

  • 1.

    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 2.

    Gjøsaeter, J. & Kawaguchi, K. A review of the world resources of mesopelagic fish. FAO Fish. Tech. Pap. 193, 123–134 (1980).

    Google Scholar 

  • 3.

    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep. Res. Part I 126, 85–102 (2017).

    Article  Google Scholar 

  • 4.

    Priede, I. G. Deep-sea fishes: Biology, diversity, ecology and fisheries. (Cambridge University Press, 2017). doi:https://doi.org/10.1017/9781316018330.

  • 5.

    Sutton, T. T. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish Biol. 83, 1508–1527 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 7.

    Cavan, E. L., Laurenceau-Cornec, E. C., Bressac, M. & Boyd, P. W. Exploring the ecology of the mesopelagic biological pump. Prog. Oceanogr. 176, 102–125 (2019).

    Article  Google Scholar 

  • 8.

    Davison, P. C., Checkley, D. M., Koslow, J. A. & Barlow, J. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog. Oceanogr. 116, 14–30 (2013).

    ADS  Article  Google Scholar 

  • 9.

    Albuquerque, F. V., Navia, A. F., Vaske-Jr, T., Crespo, O. & Hazin, F. H. V. Trophic ecology of large pelagic fish in the Saint Peter and Saint Paul Archipelago Brazil. Mar. Freshw. Res. 70, 1402–1418 (2019).

    Article  Google Scholar 

  • 10.

    Battaglia, P. et al. Feeding habits of the Atlantic bluefin tuna, Thunnus thynnus (L. 1758), in the central Mediterranean Sea (Strait of Messina). Helgol. Mar. Res. 67, 97–107 (2013).

    ADS  Article  Google Scholar 

  • 11.

    Cherel, Y., Fontaine, C., Richard, P. & Labat, J. P. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol. Oceanogr. 55, 324–332 (2010).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Drazen, J. C. & Sutton, T. T. Dining in the deep: the feeding ecology of deep-sea fishes. Ann. Rev. Mar. Sci. 9, 1–26 (2017).

    Article  Google Scholar 

  • 13.

    John, M. A. S. et al. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Mar. Sci. 3, 1–6 (2016).

    Google Scholar 

  • 14.

    Hidalgo, M. & Browman, H. I. Developing the knowledge base needed to sustainably manage mesopelagic resources. ICES J. Mar. Sci. 76, 609–615 (2019).

    Article  Google Scholar 

  • 15.

    Martin, A. et al. The oceans’ twilight zone must be studied now, before it is too late. Nature 580, 26–28 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 16.

    Levin, L., Baker, M. & Thomson, A. Deep-ocean climate change impacts on habitat, fish and fisheries. (FAO, 2019).

  • 17.

    Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Chang. 10, 576–581 (2020).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Davison, P. & Asch, R. G. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser. 432, 173–180 (2011).

    ADS  Article  Google Scholar 

  • 19.

    Drazen, J. C. et al. Midwater ecosystems must be considered when evaluating environmental risks of deep-sea mining. Proc. Natl. Acad. Sci. 117, 17455–17460 (2020).

    PubMed  Article  Google Scholar 

  • 20.

    Eduardo, L. N. et al. Hatchetfishes (Stomiiformes: Sternoptychidae) biodiversity, trophic ecology, vertical niche partitioning and functional roles in the western Tropical Atlantic. Prog. Oceanogr. 186, 102389 (2020).

    Article  Google Scholar 

  • 21.

    Olivar, M. P. et al. Mesopelagic fishes across the tropical and equatorial Atlantic: biogeographical and vertical patterns. Prog. Oceanogr. 151, 116–137 (2017).

    ADS  Article  Google Scholar 

  • 22.

    Cherel, Y., Romanov, E. V., Annasawmy, P., Thibault, D. & Ménard, F. Micronektonic fish species over three seamounts in the southwestern Indian Ocean. Deep. Res. Part II, 176 (2020).

  • 23.

    Sutton, T. T. & Hopkins, T. L. Trophic ecology of the stomiid (Pisces: Stomiidae) fish assemblage of the eastern Gulf of Mexico: strategies, selectivity and impact of a top mesopelagic predator group. Mar. Biol. 127, 179–192 (1996).

    Article  Google Scholar 

  • 24.

    Carmo, V., Sutton, T., Menezes, G., Falkenhaug, T. & Bergstad, O. A. Feeding ecology of the Stomiiformes (Pisces) of the northern Mid-Atlantic Ridge. 1. The Sternoptychidae and Phosichthyidae. Prog. Oceanogr. 130, 172–187 (2015).

  • 25.

    Richards, T. M. et al. Trophic ecology of meso- and bathypelagic predatory fishes in the Gulf of Mexico. ICES J. Mar. Sci. 76, 662–672 (2018).

    Article  Google Scholar 

  • 26.

    Sutton, T. T. & Hopkins, T. L. Species composition, abundance, and vertical distribution of the stomiid (Pisces: Stomiiformes) fish assemblage of the Gulf of Mexico. Bull. Mar. Sci. 59, 530–542 (1996).

    Google Scholar 

  • 27.

    Butler, M., Bollens, S. M., Burkhalter, B., Madin, L. P. & Horgan, E. Mesopelagic fishes of the Arabian Sea: Distribution, abundance and diet of Chauliodus pammelas, Chauliodus sloani, Stomias affinis, and Sòtomias nebulosus. Deep. Res. Part II 48, 1369–1383 (2001).

    Article  Google Scholar 

  • 28.

    Battaglia, P., Ammendolia, G., Esposito, V., Romeo, T. & Andaloro, F. Few but relatively large prey: trophic ecology of Chauliodus sloani (Pisces: Stomiidae) in deep waters of the Central Mediterranean Sea. J. Ichthyol. 58, 8–16 (2018).

    Article  Google Scholar 

  • 29.

    Gibbs, R. H. Chauliodontidae. in Fishes of the north-eastern Atlantic and the Mediterranean (eds. Whitehead, P. J. ., Bauchot, M. L., Hureau, J. C., Nielsen, J. & Tortonese, E.) 336–337 (Unesco, 1989).

  • 30.

    Harrison, I. J. The living marine resources of the Western Central Atlantic. Volume 2: Bony fishes part 1 (Acipenseridae to Grammatidae). FAO Species Identif. Guid. Fish. Purp. Am. Soc. Ichthyol. Herpetol. Spec. Publ. No. 5 601–1374 (2003).

  • 31.

    Eduardo, L. N. et al. Length-weight relationship of twelve mesopelagic fishes from the western Tropical Atlantic. J. Appl. Ichthyol. (2020) https://doi.org/10.1111/jai.14084.

  • 32.

    Figueiredo, G. A., Schwamborn, R., Bertrand, A., Munaron, J.-M. & Le Loc’h, F. Body size and stable isotope composition of zooplankton in the western Tropical Atlantic. J. Mar. Syst. 211, 103449 (2020).

  • 33.

    Willis, A. J., Sokal, R. R. & Rohlf, F. J. Introduction to Biostatistics. vol. 72 (Dover Publications, 1988).

  • 34.

    Marks, A. D., Kerstetter, D. W., Wyanski, D. M. & Sutton, T. T. Reproductive ecology of dragonfishes (Stomiiformes: Stomiidae) in the Gulf of Mexico. Front. Mar. Sci. 7, 101–105 (2020).

    Article  Google Scholar 

  • 35.

    Sorell, J. M. et al. Diet and consumption rate of Atlantic bluefin tuna (Thunnus thynnus) in the Strait of Gibraltar. Fish. Res. 188, 112–120 (2017).

    Article  Google Scholar 

  • 36.

    Varghese, S. P. & Somvanshi, V. S. Feeding ecology and consumption rates of yellowfin tuna Thunnus albacares (Bonnaterre, 1788) in the eastern Arabian Sea. Indian J. Fish. 63, 16–26 (2016).

    Article  Google Scholar 

  • 37.

    Levins, R. Evolution in changing environments: Some theoretical explorations. (Princeton University Press, Princeton, 1969).

  • 38.

    Cresson, P., Ruitton, S., Fontaine, M. F. & Harmelin-Vivien, M. Spatio-temporal variation of suspended and sedimentary organic matter quality in the Bay of Marseilles (NW Mediterranean) assessed by biochemical and isotopic analyses. Mar. Pollut. Bull. 64, 1112–1121 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Post, D. M. Using Stable Isotopes to estimate trophic postition: Models, methods and assumptions. Ecology 83, 703–718 (2002).

    Article  Google Scholar 

  • 40.

    Montoya, J. P., Carpenter, E. J. & Capone, D. G. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnol. Oceanogr. 47, 1617–1628 (2002).

    ADS  CAS  Article  Google Scholar 

  • 41.

    McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).

    CAS  Article  Google Scholar 

  • 42.

    Quezada-Romegialli, C., Jackson, A. L. & Harrod, C. Package ‘tRophicPosition’. https://github.com/clquezada/tRophicPosition (2017).

  • 43.

    Stock, B. C. & Semmens, B. X. MixSIAR GUI User Manual. Version 3.1. https://github.com/brianstock/MixSIAR (2013) https://doi.org/10.5281/zenodo.56159.

  • 44.

    Caut, S., Angulo, E. & Courchamp, F. Caution on isotopic model use for analyses of consumer diet. Can. J. Zool. 86, 438–445 (2008).

    CAS  Article  Google Scholar 

  • 45.

    Jackson, A. & Parnell, A. Stable Isotope Bayesian Ellipses in R. R package version 2.1.4. 31 https://doi.org/https://doi.org/10.1111/j.1365-2656.2011.01806.x (2019).

  • 46.

    Valls, M. et al. Trophic structure of mesopelagic fishes in the western Mediterranean based on stable isotopes of carbon and nitrogen. J. Mar. Syst. 138, 160–170 (2014).

    Article  Google Scholar 

  • 47.

    Fry, B. Stable Isotope Ecology. (Springer, 2006). doi:https://doi.org/10.1007/0-387-33745-8.

  • 48.

    Olivar, M. P., Bode, A., López-Pérez, C., Hulley, P. A. & Hernández-León, S. Trophic position of lanternfishes (Pisces: Myctophidae) of the tropical and equatorial Atlantic estimated using stable isotopes. ICES J. Mar. Sci. 76, 649–661 (2018).

    Article  Google Scholar 

  • 49.

    Netburn, A. N. & Anthony, K. Dissolved oxygen as a constraint on daytime deep scattering layer depth in the southern California current ecosystem. Deep. Res. Part I 104, 149–158 (2015).

    Article  CAS  Google Scholar 

  • 50.

    Boswell, K. M. et al. Oceanographic structure and light levels drive patterns of sound scattering layers in a low-latitude oceanic system. Front. Mar. Sci. 7, (2020).

  • 51.

    Schott, F. Monsoon response of the Somali Current and associated upwelling. Prog. Oceanogr. 12, 357–381 (1983).

    ADS  Article  Google Scholar 

  • 52.

    Rosas-Luis, R., Villanueva, R. & Sánchez, P. Trophic habits of the ommastrephid squid Illex coindetii and Todarodes sagittatus in the northwestern Mediterranean Sea. Fish. Res. 152, 21–28 (2014).

    Article  Google Scholar 

  • 53.

    Silva, G. B., Hazin, H. G., Hazin, F. H. V. & Vaske-Jr, T. Diet composition of bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) caught on aggregated schools in the western equatorial Atlantic Ocean. J. Appl. Ichthyol. 2, 1111–1118 (2019).

    Article  Google Scholar 

  • 54.

    Gaskett, A. C., Bulman, C., He, X. & Goldsworthy, S. D. Diet composition and guild structure of mesopelagic and bathypelagic fishes near Macquarie Island, Australia New Zeal. J. Mar. Freshw. Res. 35, 469–476 (2001).

    Article  Google Scholar 

  • 55.

    Laptikhovsky, V. V. A trophic ecology of two grenadier species (Macrouridae, Pisces) in deep waters of the Southwest Atlantic. Deep. Res. Part I 52, 1502–1514 (2005).

    ADS  Article  Google Scholar 

  • 56.

    González, C., Bruno, I. & Paz, X. Food and feeding of deep-sea redfish (Sebastes mentella Travin) in the North Atlantic. NAFO Sci. Counc. Stud. 10, 89–101 (2000).

    Google Scholar 

  • 57.

    Clarke, T. A. Feeding habits of stomiatoid fishes from Hawaiian waters. Fish. Bull. 80, 287–304 (1982).

    Google Scholar 

  • 58.

    Roe, H. S. J. The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 2. Vertical migrations and feeding of mysids and decapod crustacea. Prog. Oceanogr. 13, 269–318 (1984).

  • 59.

    Legand, M. & Rivaton, J. Cycles biologiques des poissons mésopélagiques dans l’est de l’océan Indien. Cah. O.R.S.T.O.M., Sér. Océanogr 5, 47–71 (1967).

  • 60.

    Suntsov, A. V. & Brodeur, R. D. Trophic ecology of three dominant myctophid species in the northern California Current region. Mar. Ecol. Prog. Ser. 373, 81–96 (2008).

    ADS  Article  Google Scholar 

  • 61.

    Sutton, T. T., Lancraft, T. M. & Hopkins, T. L. The trophic structure and predation impact of a low latitude midwater fish assemblage. Prog. Oceanogr. 38, 205–239 (1997).

    Google Scholar 

  • 62.

    Hudson, J. M., Steinberg, D. K., Sutton, T. T., Graves, J. E. & Latour, R. J. Myctophid feeding ecology and carbon transport along the northern Mid-Atlantic Ridge. Deep. Res. Part I 93, 104–116 (2014).

    Article  Google Scholar 

  • 63.

    Hu, V. J. H. Relationships between vertical migration and diet in four species of euphausiids. Limnol. Oceanogr. 23, 296–306 (1978).

    ADS  Article  Google Scholar 

  • 64.

    Stefanoudis, P. V. et al. Changes in zooplankton communities from epipelagic to lower mesopelagic waters. Mar. Environ. Res. 146, 1–11 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Aumont, O., Maury, O., Lefort, S. & Bopp, L. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Global Biogeochem. Cycles 32, 1622–1643 (2018).

    ADS  CAS  Article  Google Scholar 

  • 66.

    Kwong, L. & Pakhomov, E. Assessment of active vertical carbon transport: New methodology. Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauk. 159, 492–509 (2017).

  • 67.

    Ariza, A., Garijo, J. C., Landeira, J. M., Bordes, F. & Hernández-León, S. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134, 330–342 (2015).

    ADS  Article  Google Scholar 

  • 68.

    Choy, C. A., Portner, E., Iwane, M. & Drazen, J. C. Diets of five important predatory mesopelagic fishes of the central North Pacific. Mar. Ecol. Prog. Ser. 492, 169–184 (2013).

    ADS  Article  Google Scholar 

  • 69.

    Burd, A. B. et al. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets?. Deep. Res. Part II 57, 1557–1571 (2010).

    Article  CAS  Google Scholar 

  • 70.

    Wang, F. et al. Trophic interactions of mesopelagic fishes in the south China Sea illustrated by stable isotopes and fatty acids. Front. Mar. Sci. 5, 1–12 (2019).

    ADS  Article  Google Scholar 

  • 71.

    Choy, C. A., Popp, B. N., Hannides, C. C. S. & Drazen, J. C. Trophic structure and food resources of epipelagic and mesopelagic fishes in the north Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnol. Oceanogr. 60, 1156–1171 (2015).

    ADS  Article  Google Scholar 

  • 72.

    Henson, S., Le Moigne, F. & Giering, S. Drivers of carbon export efficiency in the global ocean. Global Biogeochem. Cycles 33, 891–903 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Boyer, T. P. et al. World Ocean Atlas 2018. NOAA National Centers for Environmental Information. https://accession.nodc.noaa.gov/NCEI-WOA18 (2018).

  • 74.

    Williams, A., Koslow, J., Terauds, A. & Haskard, K. Feeding ecology of five fishes from the mid-slope micronekton community off southern Tasmania Australia. Mar. Biol. 139, 1177–1192 (2001).

    Article  Google Scholar 

  • 75.

    Williams, A. & Koslow, J. A. Species composition, biomass and vertical distribution of micronekton over the mid-slope region off southern Tasmania Australia. Mar. Biol. 130, 259–276 (1997).

    Article  Google Scholar 

  • 76.

    Sokolov, S. & Rintoul, S. Circulation and water masses of the southwest Pacific: WOCE section P11, Papua New Guinea to Tasmania. J. Mar. Res. 58, 223–268 (2000).

    Article  Google Scholar 

  • 77.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    ADS  Article  Google Scholar 

  • 78.

    Martínez-García, A. et al. Iron fertilization of the subantarctic ocean during the last ice age. Science 343, 1347–1350 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 79.

    Annasawmy, P. et al. Micronekton distributions and assemblages at two shallow seamounts of the south-western Indian Ocean: Insights from acoustics and mesopelagic trawl data. Prog. Oceanogr. 178, 102161 (2019).

    Article  Google Scholar 

  • 80.

    Jena, B., Sahu, S., Avinash, K. & Swain, D. Observation of oligotrophic gyre variability in the south Indian Ocean: environmental forcing and biological response. Deep. Res. Part I 80, 1–10 (2013).

    Google Scholar 

  • 81.

    Søiland, H., Budgell, W. P. & Knutsen, O. The physical oceanographic conditions along the Mid-Atlantic Ridge north of the Azores in June–July 2004. Deep. Res. Part II(55), 29–44 (2008).

    Article  Google Scholar 

  • 82.

    Cook, A. B., Sutton, T. T., Galbraith, J. K. & Vecchione, M. Deep-pelagic (0–3000m) fish assemblage structure over the Mid-Atlantic Ridge in the area of the Charlie-Gibbs Fracture Zone. Deep. Res. Part II 98, 279–291 (2013).

    Article  Google Scholar 

  • 83.

    Van Utrecht, W. L., Van Utrecht-Cock, C. N. & De Graaf, A. M. J. Growth and seasonal variations in distribution of Chauliodus sloani and C. danae (Pisces) from the mid North Atlantic. Bijdr. Dierkd. 57, 164–182 (1987).


  • Source: Ecology - nature.com

    3 Questions: Hessam AzariJafari on mitigating climate change with reflective pavements

    Early evidence of a shift in juvenile fish communities in response to conditions in nursery areas