in

Mismatch of thermal optima between performance measures, life stages and species of spiny lobster

  • 1.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

  • 2.

    Last, P. R. et al. Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecol. Biogeogr. 20, 58–72. https://doi.org/10.1111/j.1466-8238.2010.00575.x (2011).

    Article  Google Scholar 

  • 3.

    Pitt, N. R., Poloczanska, E. S. & Hobday, A. J. Climate-driven range changes in Tasmanian intertidal fauna. Mar. Freshw. Res. 61, 963–970. https://doi.org/10.1071/MF09225 (2010).

    CAS  Article  Google Scholar 

  • 4.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925. https://doi.org/10.1038/nclimate1958 (2013).

    ADS  Article  Google Scholar 

  • 5.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 6.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242. https://doi.org/10.1126/science.1239352 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 7.

    McLeod, D. J., Hobday, A. J., Lyle, J. M. & Welsford, D. C. A prey-related shift in the abundance of small pelagic fish in eastern Tasmania?. ICES J. Mar. Sci. 69, 953–960. https://doi.org/10.1093/icesjms/fss069 (2012).

    Article  Google Scholar 

  • 8.

    Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32. https://doi.org/10.1016/j.jembe.2011.02.032 (2011).

    Article  Google Scholar 

  • 9.

    Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156, 883–894. https://doi.org/10.1007/s00442-008-1043-9 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 10.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    Article  Google Scholar 

  • 11.

    Pecl, G. et al. The east coast Tasmanian rock lobster fishery—vulnerability to climate change impacts and adaptation response options. (Report to the Department of Climate Change, Australia, 2009).

  • 12.

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).

    Google Scholar 

  • 13.

    Fry, F. E. J. Effects of the Environment on Animal Activity (University of Toronto Press, Toronto, 1947).

    Google Scholar 

  • 14.

    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19, 1372–1385. https://doi.org/10.1111/ele.12686 (2016).

    Article  PubMed  Google Scholar 

  • 15.

    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692. https://doi.org/10.2307/20145158 (2008).

    Article  PubMed  Google Scholar 

  • 16.

    Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97. https://doi.org/10.1126/science.1135471 (2007).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 17.

    Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702. https://doi.org/10.1093/icb/icr097 (2011).

    Article  PubMed  Google Scholar 

  • 18.

    Donelson, J. M., McCormick, M. I., Booth, D. J. & Munday, P. L. Reproductive acclimation to increased water temperature in a tropical reef fish. PLoS ONE 9, e97223. https://doi.org/10.1371/journal.pone.0097223 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Twiname, S., Fitzgibbon, Q. P., Hobday, A. J., Carter, C. G. & Pecl, G. T. Multiple measures of thermal performance of early stage eastern rock lobster in a fast-warming ocean region. Mar. Ecol. Prog. Ser. 624, 1–11 (2019).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Fitzgibbon, Q. P., Simon, C. J., Smith, G. G., Carter, C. G. & Battaglene, S. C. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster Sagmariasus verreauxi. Comp. Biochem. Phys. A 207, 13–20 (2017).

    CAS  Article  Google Scholar 

  • 21.

    Lord, J. P., Barry, J. P. & Graves, D. Impact of climate change on direct and indirect species interactions. Mar. Ecol. Prog. Ser. 571, 1–11 (2017).

    ADS  Article  Google Scholar 

  • 22.

    Dell, A. I., Pawar, S. & Savage, V. M. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83, 70–84. https://doi.org/10.1111/1365-2656.12081 (2014).

    Article  PubMed  Google Scholar 

  • 23.

    Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226. https://doi.org/10.1016/j.jembe.2011.02.029 (2011).

    Article  Google Scholar 

  • 24.

    Marshak, A. R. & Heck, K. L. Interactions between range-expanding tropical fishes and the northern Gulf of Mexico red snapper Lutjanus campechanus. J. Fish Biol. 91, 1139–1165. https://doi.org/10.1111/jfb.13406 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 25.

    Milazzo, M., Mirto, S., Domenici, P. & Gristina, M. Climate change exacerbates interspecific interactions in sympatric coastal fishes. J. Anim. Ecol. 82, 468–477. https://doi.org/10.1111/j.1365-2656.2012.02034.x (2013).

    Article  PubMed  Google Scholar 

  • 26.

    Grigaltchik, V. S., Ward, A. J. W. & Seebacher, F. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship. Proc. R. Soc. B-Biol. Sci. 279, 4058–4064. https://doi.org/10.1098/rspb.2012.1277 (2012).

    Article  Google Scholar 

  • 27.

    Johansen, J. L. & Jones, G. P. Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Glob. Change Biol. 17, 2971–2979. https://doi.org/10.1111/j.1365-2486.2011.02436.x (2011).

    ADS  Article  Google Scholar 

  • 28.

    Batty, R. & Blaxter, J. The effect of temperature on the burst swimming performance of fish larvae. J. Exp. Biol. 170, 187–201 (1992).

    Google Scholar 

  • 29.

    Temple, G. K. & Johnston, I. A. Testing hypotheses concerning the phenotypic plasticity of escape performance in fish of the family Cottidae. J. Exp. Biol. 201, 317–331 (1998).

    CAS  PubMed  Google Scholar 

  • 30.

    Fry, F. E. J. & Hart, J. S. The relation of temperature to oxygen consumption in the goldfish. Biol. Bull. 94, 66–77. https://doi.org/10.2307/1538211 (1948).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Clark, T. D., Sandblom, E. & Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782. https://doi.org/10.1242/jeb.084251 (2013).

    Article  PubMed  Google Scholar 

  • 32.

    Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J. Exp. Biol. 221, jeb169615 (2018).

  • 33.

    Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685 (2017).

    Article  Google Scholar 

  • 34.

    Norin, T., Malte, H. & Clark, T. D. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J. Exp. Biol. 217, 244–251. https://doi.org/10.1242/jeb.089755 (2014).

    Article  PubMed  Google Scholar 

  • 35.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789. https://doi.org/10.1890/03-9000 (2004).

    Article  Google Scholar 

  • 36.

    Domenici, P. & Blake, R. The kinematics and performance of fish fast-start swimming. J. Exp. Biol. 200, 1165–1178 (1997).

    CAS  PubMed  Google Scholar 

  • 37.

    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. USA 108, 10591–10596. https://doi.org/10.1073/pnas.1015178108 (2011).

    ADS  Article  PubMed  Google Scholar 

  • 38.

    Ohlund, G., Hedstrom, P., Norman, S., Hein, C. L. & Englund, G. Temperature dependence of predation depends on the relative performance of predators and prey. Proc. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rspb.2014.2254 (2015).

    Article  Google Scholar 

  • 39.

    England, W. R. & Baldwin, J. Anaerobic energy metabolism in the tail musculature of the Australian Yabby Cherax destructor (Crustacea, Decapoda, Parastacidae): role of phosphagens and anaerobic glycolysis during escape behavior. Physiol. Zool. 56, 614–622 (1983).

    CAS  Article  Google Scholar 

  • 40.

    De Zwaan, A. & v.d. Thillart, G. in Circulation, Respiration, and Metabolism (ed Raymond Gilles) 166–192 (Springer, Berlin, 1985).

  • 41.

    Ellington, W. R. The recovery from anaerobic metabolism in invertebrates. J. Exp. Zool. 228, 431–444. https://doi.org/10.1002/jez.1402280305 (1983).

    CAS  Article  Google Scholar 

  • 42.

    Hobday, A. & Pecl, G. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fisher 24, 415–425. https://doi.org/10.1007/s11160-013-9326-6 (2014).

    Article  Google Scholar 

  • 43.

    Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613. https://doi.org/10.1029/2007GL030393 (2007).

    ADS  Article  Google Scholar 

  • 44.

    Robinson, L. et al. Rapid assessment of an ocean warming hotspot reveals “high” confidence in potential species’ range extensions. Glob. Environ. Change 31, 28–37 (2015).

    Article  Google Scholar 

  • 45.

    Redmap Australia. Institute for Marine and Antarctic Studies, University of Tasmania, <http://www.redmap.org.au/sightings/?species=167> (2020).

  • 46.

    Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719–731. https://doi.org/10.1111/j.1365-2486.2008.01734.x (2009).

    ADS  Article  Google Scholar 

  • 47.

    Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast Shelf Sci. 72, 102–114. https://doi.org/10.1016/j.ecss.2006.10.003 (2007).

    ADS  Article  Google Scholar 

  • 48.

    Figueira, W. F., Biro, P., Booth, D. J. & Valenzuela, V. C. Performance of tropical fish recruiting to temperate habitats: role of ambient temperature and implications of climate change. Mar. Ecol. Prog. Ser. 384, 231–239. https://doi.org/10.3354/meps08057 (2009).

    ADS  Article  Google Scholar 

  • 49.

    Cetina-Heredia, P., Roughan, M., Sebille, E., Feng, M. & Coleman, M. A. Strengthened currents override the effect of warming on lobster larval dispersal and survival. Glob. Change Biol. 21, 4377–4386. https://doi.org/10.1111/gcb.13063 (2015).

    ADS  Article  Google Scholar 

  • 50.

    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70. https://doi.org/10.1126/science.aaz3658 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 51.

    Fitzgibbon, Q. P., Ruff, N., Tracey, S. R. & Battaglene, S. C. Thermal tolerance of the nektonic puerulus stage of spiny lobsters and implications of ocean warming. Mar. Ecol. Prog. Ser. 515, 173–186. https://doi.org/10.3354/meps10979 (2014).

    ADS  Article  Google Scholar 

  • 52.

    Storch, D., Fernández, M., Navarrete, S. A. & Pörtner, H. O. Thermal tolerance of larval stages of the Chilean kelp crab Taliepus dentatus. Mar. Ecol. Prog. Ser. 429, 157–167 (2011).

    ADS  Article  Google Scholar 

  • 53.

    Walther, K., Anger, K. & Pörtner, H. O. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Mar. Ecol. Prog. Ser. 417, 159–170 (2010).

    ADS  Article  Google Scholar 

  • 54.

    54Phillips, B. F., Booth, J. D., Cobb, J. S., Jeffs, A. G. & McWilliam, P. in Lobsters: Biology, Management, Aquaculture and Fisheries (ed Bruce F. Phillips) 231–262 (Blackwell Publishing Ltd, 2006).

  • 55.

    Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef Australia. Bull. Mar. Sci. 42, 459–479 (1988).

    Google Scholar 

  • 56.

    Emery, A. R. Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at alligator Reef Florida keys. Bull. Mar. Sci. 23, 649–770 (1973).

    Google Scholar 

  • 57.

    Hinkle, P. C. P/O ratios of mitochondrial oxidative phosphorylation. BBA-Bioenergetics 1706, 1–11. https://doi.org/10.1016/j.bbabio.2004.09.004 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    Pörtner, H. O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Phys. A 132, 739–761. https://doi.org/10.1016/S1095-6433(02)00045-4 (2002).

    Article  Google Scholar 

  • 59.

    Speed, S. R., Baldwin, J., Wong, R. J. & Wells, R. M. G. Metabolic characteristics of muscles in the spiny lobster, Jasus edwardsii, and responses to emersion during simulated live transport. Comp. Biochem. Phys. B 128, 435–444. https://doi.org/10.1016/S1096-4959(00)00340-7 (2001).

    CAS  Article  Google Scholar 

  • 60.

    Morris, S. & Adamczewska, A. M. Utilisation of glycogen, ATP and arginine phosphate in exercise and recovery in terrestrial red crabs Gecarcoidea natalis. Comp. Biochem. Phys. A 133, 813–825. https://doi.org/10.1016/S1095-6433(02)00217-9 (2002).

    Article  Google Scholar 

  • 61.

    Head, G. & Baldwin, J. Energy metabolism and the fate of lactate during recovery from exercise in the Australian freshwater crayfish Cherax destructor. Mar. Freshw. Res. 37, 641–646. https://doi.org/10.1071/MF9860641 (1986).

    CAS  Article  Google Scholar 

  • 62.

    Clark, T. D., Messmer, V., Tobin, A. J., Hoey, A. S. & Pratchett, M. S. Rising temperatures may drive fishing-induced selection of low-performance phenotypes. Sci. Rep. 7, 40571. https://doi.org/10.1038/srep40571 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Foo, S. A. & Byrne, M. Acclimatization and Adaptive capacity of marine species in a changing ocean. Adv. Mar. Biol. 74, 69–116. https://doi.org/10.1016/bs.amb.2016.06.001 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 64.

    Evans, T. G., Diamond, S. E. & Kelly, M. W. Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 3, cov056. https://doi.org/10.1093/conphys/cov056 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66. https://doi.org/10.1038/nclimate2457 (2015).

    ADS  Article  Google Scholar 

  • 66.

    Donelson, J. M., Munday, P. L., McCormick, M. I. & Nilsson, G. E. Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Glob. Change Biol. 17, 1712–1719. https://doi.org/10.1111/j.1365-2486.2010.02339.x (2011).

    ADS  Article  Google Scholar 

  • 67.

    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101. https://doi.org/10.1038/ncomms16101 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 68.

    Oliver, E. C. J. et al. Marine heatwaves off eastern Tasmania: trends, interannual variability, and predictability. Prog. Oceanogr. 161, 116–130. https://doi.org/10.1016/j.pocean.2018.02.007 (2018).

    ADS  Article  Google Scholar 

  • 69.

    Stobart, B., Mayfield, S., Mundy, C., Hobday, A. J. & Hartog, J. R. Comparison of in situ and satellite sea surface-temperature data from South Australia and Tasmania: how reliable are satellite data as a proxy for coastal temperatures in temperate southern Australia?. Mar. Freshw. Res. 67, 612–625. https://doi.org/10.1071/MF14340 (2016).

    Article  Google Scholar 

  • 70.

    Grose, M. R. et al. Climate Futures for Tasmania: general climate impacts technical report. (Antarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Tasmania., 2010).

  • 71.

    Gilman, S. E. Predicting indirect effects of predator-prey interactions. Integr. Comp. Biol. 57, 148–158. https://doi.org/10.1093/icb/icx031 (2017).

    Article  PubMed  Google Scholar 

  • 72.

    Fitzgibbon, Q. P. & Battaglene, S. C. Effect of photoperiod on the culture of early-stage phyllosoma and metamorphosis of spiny lobster (Sagmariasus verreauxi). Aquaculture 368, 48–54. https://doi.org/10.1016/j.aquaculture.2012.09.018 (2012).

    Article  Google Scholar 

  • 73.

    Fitzgibbon, Q. P., Battaglene, S. C. & Ritar, A. J. Effect of water temperature on the development and energetics of early, mid and late-stage phyllosoma larvae of spiny lobster Sagmariasus verreauxi. Aquaculture 344–349, 153–160. https://doi.org/10.1016/j.aquaculture.2012.03.008 (2012).

    Article  Google Scholar 

  • 74.

    Jensen, M. A., Fitzgibbon, Q. P., Carter, C. G. & Adams, L. R. Effect of body mass and activity on the metabolic rate and ammonia-N excretion of the spiny lobster Sagmariasus verreauxi during ontogeny. Comp. Biochem. Phys. A 166, 191–198. https://doi.org/10.1016/j.cbpa.2013.06.003 (2013).

    CAS  Article  Google Scholar 

  • 75.

    Fitzgibbon, Q. P., Jeffs, A. G. & Battaglene, S. C. The Achilles heel for spiny lobsters: the energetics of the non-feeding post-larval stage. Fish Fish 15, 312–326. https://doi.org/10.1111/faf.12018 (2014).

    Article  Google Scholar 

  • 76.

    Harvey, E., Shortis, M., Stadler, M. & Cappo, M. A Comparison of the accuracy and precision of measurements from single and stereo-video systems. Mar. Technol. Soc. J. 36, 38–49. https://doi.org/10.4031/002533202787914106 (2002).

    Article  Google Scholar 

  • 77.

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2017).

  • 78.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 79.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2009).

    Google Scholar 


  • Source: Ecology - nature.com

    Resistance to insecticides and synergism by enzyme inhibitors in Aedes albopictus from Punjab, Pakistan

    Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes