in

Malaria hotspots explained from the perspective of ecological theory underlying insect foraging

  • 1.

    Haakenstad, A. et al. Tracking spending on malaria by source in 106 countries, 2000–16: an economic modelling study. Lancet Infect. Dis. 19, 703–716 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Dhiman, S. Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infect. Dis. Poverty. 8, 14 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Alimi, T. O. et al. Prospects and recommendations for risk mapping to improve strategies for effective malaria vector control interventions in Latin America. Malar. J. 14, 519 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Peterson, I., Borrell, L. N., El-Sadr, W. & Teklehaimanot, A. A temporal-spatial analysis of malaria transmission in Adama, Ethiopia. Am. J. Trop. Med. Hyg. 81, 944–949 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Bannister-Tyrrell, M. et al. Micro-epidemiology of malaria in an elimination setting in Central Vietnam. Malar. J. 17, 119 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Durnez, L. et al. Identification and characterization of areas of high and low risk for asymptomatic malaria infections at sub-village level in Ratanakiri Cambodia. Malar. J. 17, 27 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Ye, Y., Kyobutungi, C., Louis, V. R. & Sauerborn, R. Micro-epidemiology of Plasmodium falciparum malaria: is there any difference in transmission risk between neighbouring villages?. Malar. J. 6, 46 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Bousema, T. et al. Identification of hot spots of malaria transmission for targeted malaria control. J. Infect. Dis. 201, 1764–1774 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Sissoko, M. S. et al. Spatial patterns of Plasmodium falciparum clinical incidence, asymptomatic parasite carriage and Anopheles density in two villages in Mali. Am. J. Trop. Med. Hyg. 93, 790 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Rulisa, S. et al. Malaria prevalence, spatial clustering and risk factors in a low endemic area of eastern Rwanda: a cross sectional study. PLoS ONE 8, e69443 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Seyoum, D. et al. Household level spatio-temporal analysis of Plasmodium falciparum and Plasmodium vivax malaria in Ethiopia. Parasit. Vectors. 10, 196 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Kabaghe, A. N. et al. Fine-scale spatial and temporal variation of clinical malaria incidence and associated factors in children in rural Malawi: a longitudinal study. Parasit. Vectors. 11, 129 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Staedke, S. G. et al. Short report: proximity to mosquito breeding sites as a risk factor for clinical malaria episodes in an urban cohort of Ugandan children. Am. J. Trop. Med. Hyg. 69, 244–246 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Zhou, S. S. et al. Spatial correlation between malaria cases and water-bodies in Anopheles sinensis dominated areas of Huang-Huai plain China. Parasit. Vectors. 5, 106 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Debebe, Y., Hill, S. R., Tekie, H., Ignell, R. & Hopkins, R. J. Shady business: understanding the spatial ecology of exophilic Anopheles mosquitoes. Malar. J. 17, 351 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Hawkes, F. M. et al. Vector compositions change across forested to deforested ecotones in emerging areas of zoonotic malaria transmission in Malaysia. Sci. Rep. 9, 13312 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 17.

    Ye, Y. et al. Housing conditions and Plasmodium falciparum infection: protective effect of iron-sheet roofed houses. Malar. J. 5, 8 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Wanzirah, H. et al. Mind the gap: house structure and the risk of malaria in Uganda. PLoS ONE 10, e0117396 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Ondiba, I. M. et al. Malaria vector abundance is associated with house structures in Baringo County Kenya. PLoS ONE 13, e0198970 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 20.

    Plucinski, M. M. et al. Evaluation of a universal coverage bed net distribution campaign in four districts in Sofala Province Mozambique. Malar. J. 13, 427 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Levitz, L. et al. Effect of individual and community-level bed net usage on malaria prevalence among under-fives in the Democratic Republic of Congo. Malar. J. 17, 39 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Kaindoa, E. W., Mkandawile, G., Ligamba, G., Kelly-Hope, L. A. & Okumu, F. O. Correlations between household occupancy and malaria vector biting risk in rural Tanzanian villages: implications for high-resolution spatial targeting of control interventions. Malar. J. 15, 199 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Bousema, T. et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 9, e1001165 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    World Health Organization. Global technical strategy for malaria 2016–2030. (World Health Organization, 2015).

  • 25.

    Ma, B. O. & Roitberg, B. D. The role of resource availability and state-dependence in the foraging strategy of blood-feeding mosquitoes. Evol. Ecol. Res. 10(8), 1111–1130 (2008).

    Google Scholar 

  • 26.

    Omondi, A. B., Ghaninia, M., Dawit, M., Svensson, T. & Ignell, R. Age-dependent regulation of host seeking in Anopheles coluzzii. Sci. Rep. 9, 9699 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Agrawal, A. A., Lau, J. A. & Hamback, P. A. Plant community heterogeneity and the evolution of plant–herbivore interactions. Q. Rev. Biol. 81, 349–376 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Jones, R.E. Search Behaviour: strategies and outcomes. In: Proceedings of 8th International Symposium on Insect-Plant Relationships (eds. Menken, S. B. J., Visser, J. H., Harrewijn, P.) 93–102 (Dordrecht, 1992).

  • 29.

    Root, R. B. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).

    Article  Google Scholar 

  • 30.

    Cromartie, W. J. The effect of stand size and vegetational background on the colonization of cruciferous plants by herbivorous insects. J. Appl. Ecol. 12, 517–533 (1975).

    Article  Google Scholar 

  • 31.

    Lidicker, W.Z. & Peterson, J.A. Responses of small mammals to habitat edges. In Landscape Ecology of Small Mammals (eds. Barrett, G.W. & Peles, J.D.) 221–227 (Springer, 1999).

  • 32.

    Forman, R.T.T. Land mosaics. The ecology of landscapes and regions (Cambridge University Press, 1995).

  • 33.

    Bousema, T. et al. The impact of hotspot-targeted interventions on malaria transmission in Rachuonyo South District in the Western Kenyan highlands: a cluster-randomized controlled trial. PLoS Med. 13, e1001993 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Platt, A., Obala, A. A., MacIntyre, C., Otsyula, B. & O’Meara, W. P. Dynamic malaria hotspots in an open cohort in western Kenya. Sci. Rep. 8, 647 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Charlwood, J.D & Alecrim, W.A. Capture-recapture studies with the South American malaria vector Anopheles darlingi, Root. Ann. Trop. Med. Parasit. 83, 569–576 (1989).

  • 36.

    Takken, W., Charlwood, J.D., Billingsley, P.F. & Gort G. Dispersal and survival of Anopheles funestus and A. gambiae s.l. (Diptera: Culicidae) during the rainy season on southeast Tanzania. B. Entomol. Res. 88, 561–566 (1998).

  • 37.

    Thiemann, T. C., Wheeler, S. S., Barker, C. M. & Reisen, W. K. Mosquito host selection varies seasonally with host availability and mosquito density. PLoS Negl. Trop. Dis. 5, e1452 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Cummins, B., Cortez, R., Foppa, I. M., Walbeck, J. & Hyman, J. M. A spatial model of mosquito host-seeking behaviour. PLoS Comput. Biol. 8, e1002500 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Gillies, M.T. Studies of house leaving and outside resting of Anopheles gambiae Giles and Anopheles funestus Giles in East Africa. I.-The outside resting population. Bull. Ent. Res. 45, 361–374 (1954).

  • 40.

    Gillies, M.T. Studies of house leaving and outside resting of Anopheles gambiae Giles and Anopheles funestus Giles in East Africa. II. The Exodus from houses and the house resting population. Bull. Ent. Res. 45(2), 375–387 (1954b).

  • 41.

    Jansson, S., et al. Real-time dispersal of malaria vectors in rural Africa monitored with lidar. PLoS ONE (accepted).

  • 42.

    Port, G. R., Boreham, P. F. L. & Bryan, J. H. The relationship of host size to feeding by mosquitoes of the Anopheles gambiae Giles complex (Diptera: Culicidae). B. Entomol. Res. 70, 133–144 (1980).

    Article  Google Scholar 

  • 43.

    Kirby, M. J. et al. Risk factors for house-entry by malaria vectors in a rural town and satellite villages in the Gambia. Malar. J. 7, 2 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Thomas, C. J., Cross, D. E. & Bøgh, C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE 8, e68679 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Bannister-Tyrrell, M. et al. Defining micro-epidemiology for malaria elimination: systematic review and meta-analysis. Malar. J. 16, 164 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Jansson, S., et al. Real-time dispersal of malaria vectors in rural Africa monitored with lidar. PloS One. Accepted.

  • 47.

    World Health Organization. Manual on practical entomology in malaria. Part 2: methods and techniques. (World Health Organization, 1975).

  • 48.

    Verrone, G. A. Outline for the determination of malarial mosquitoes in Ethiopia. Mosq. News. 22, 37–49 (1962).

    Google Scholar 

  • 49.

    Gillies, M. & Coetzee, M. A supplement to the anopheline of Africa South of Sahara. S. Afr. Inst. Med. Res55, 143 (1987).

    Google Scholar 

  • 50.

    Massebo, F., Balkew, M., Gebre-Michael, T. & Lindtjørn, B. Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in South-West Ethiopia. Parasit. Vectors. 6, 44 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Wrtiz, R., Avery, M. & Benedict, M. Methods in Anopheles research: Plasmodium sporozoite ELISA. (Center for Disease Control, 2007).

  • 52.

    Loha, E. & Lindtjorn, B. Predictors of Plasmodium falciparum malaria incidence in Chano Mille, South Ethiopia: a longitudinal study. Am. J. Trop. Med. Hyg. 87, 450–459 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Naing, L., Winn, T. & Rusli, B. N. Practical issues in calculating the sample size for prevalence studies. Arch. Orofac. Sci. 1, 9–14 (2006).

    Google Scholar 

  • 54.

    World Health Organization. Basic malaria microscopy. Part I: Learner’s guide. (World Health Organizations, 1991).

  • 55.

    Ministry of Health of Ethiopia. Malaria diagnosis and treatment guidelines for health workers in Ethiopia. (Federal Democratic Republic of Ethiopia Ministry of Health, 2004).

  • 56.

    Getis, R. & Ord, J. K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189–206 (1992).

    Article  Google Scholar 

  • 57.

    Drakeley, C. et al. An estimation of the entomological inoculation rate for Ifakara: a semi-urban area in a region of intense malaria transmission. Trop. Med. Int. Health. 8, 767–774 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Field geology at a distance

    MISTI pilots conversations in energy