in

Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity

  • 1.

    Tisdale, H. The process of urbanization. Soc. Forces 20, 311–316 (1942).

    Article  Google Scholar 

  • 2.

    McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883–890 (2002).

    Article  Google Scholar 

  • 3.

    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 5.

    Turrini, T., Sanders, D. & Knop, E. Effects of urbanization on direct and indirect interactions in a tri-trophic system. Ecol. Appl. 26, 664–675 (2016).

    Article  Google Scholar 

  • 6.

    Theodorou, P. et al. Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.). Proc. R. Soc. B Biol. Sci. 285, 20172806 (2018).

    Article  Google Scholar 

  • 7.

    Thompson, K. A., Renaudin, M. & Johnson, M. T. J. Urbanization drives the evolution of parallel clines in plant populations. Proc. R. Soc. B Biol. Sci. 283, 20162180 (2016).

    Article  Google Scholar 

  • 8.

    Theodorou, P., Baltz, L. M., Paxton, R. J. & Soro, A. Urbanisation is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol. Appl. 10, 1–16 (2020).

    Google Scholar 

  • 9.

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).

    Article  Google Scholar 

  • 10.

    Potts, S. G., Vulliamy, B., Dafni, A., Nee’man, G. & Willmer, P. Linking bees and flowers: how do floral communities structure pollinator communities?. Ecology 84, 2628–2642 (2003).

    Article  Google Scholar 

  • 11.

    Steffan-Dewenter, I. & Tscharntke, T. Succession of bee communities on fallows. Ecography 24, 83–93 (2001).

    Article  Google Scholar 

  • 12.

    Fründ, J., Linsenmair, K. E. & Blüthgen, N. Pollinator diversity and specialization in relation to flower diversity. Oikos 119, 1581–1590 (2010).

    Article  Google Scholar 

  • 13.

    Ebeling, A., Klein, A. M., Schumacher, J., Weisser, W. W. & Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos 117, 1808–1815 (2008).

    Article  Google Scholar 

  • 14.

    Theodorou, P. et al. The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Funct. Ecol. 31, 838–847 (2017).

    Article  Google Scholar 

  • 15.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Ghazoul, J. Floral diversity and the facilitation of pollination. J. Ecol. 94, 295–304 (2006).

    Article  Google Scholar 

  • 17.

    Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Lundgren, R., Totland, Ø. & Lázaro, A. Experimental simulation of pollinator decline causes community-wide reductions in seedling diversity and abundance. Ecology 97, 1420–1430 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Papanikolaou, A. D. et al. Wild bee and floral diversity co-vary in response to the direct and indirect impacts of land use. Ecosphere 8, e02008 (2017).

    Article  Google Scholar 

  • 20.

    Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl. Acad. Sci. U. S. A. 110, 13044–13048 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Albrecht, J. et al. Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nat. Commun. 9, 3177 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 23.

    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett. 10, 299–314 (2007).

    PubMed  Article  Google Scholar 

  • 24.

    Harrison, T. & Winfree, R. Urban drivers of plant-pollinator interactions. Funct. Ecol. 29, 879–888 (2015).

    Article  Google Scholar 

  • 25.

    Baldock, K. C. R. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B Biol. Sci. 282, 20142849 (2015).

    Article  Google Scholar 

  • 26.

    Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban–rural gradient. PLoS ONE 6, e23459 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Buchholz, S., Gathof, A. K., Grossmann, A. J., Kowarik, I. & Fischer, L. K. Wild bees in urban grasslands: urbanisation, functional diversity and species traits. Landsc. Urban Plan. 196, 103731 (2020).

    Article  Google Scholar 

  • 30.

    Hung, K. J., Ascher, J. S., Davids, J. A. & Holway, D. A. Ecological filtering in scrub fragments restructures the taxonomic and functional composition of native bee assemblages. Ecology 100, e02654 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Buchholz, S. & Egerer, M. H. Functional ecology of wild bees in cities: towards a better understanding of trait-urbanization relationships. Biodivers. Conserv. 29, 2779–2801 (2020).

    Article  Google Scholar 

  • 32.

    Cane, J. H., Minckley, R. L., Kervin, L. J., Roulston, T. H. & Williams, N. M. Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol. Appl. 16, 632–644 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Banaszak-Cibicka, W. & Żmihorski, M. Wild bees along an urban gradient: winners and losers. J. Insect Conserv. 16, 331–343 (2011).

    Article  Google Scholar 

  • 34.

    Neame, L. A., Griswold, T. & Elle, E. Pollinator nesting guilds respond differently to urban habitat fragmentation in an oak-savannah ecosystem. Insect Conserv. Divers. 6, 57–66 (2013).

    Article  Google Scholar 

  • 35.

    Fitch, G. et al. Does urbanization favour exotic bee species? Implications for the conservation of native bees in cities. Biol. Lett. 15, 20190574 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Knapp, S., Kühn, I., Schweiger, O. & Klotz, S. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol. Lett. 11, 1054–1064 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Kühn, I., Brandl, R. & Klotz, S. The flora of German cities is naturally species rich. Evol. Ecol. Res. 6, 749–764 (2004).

    Google Scholar 

  • 38.

    Knapp, S., Winter, M. & Klotz, S. Increasing species richness but decreasing phylogenetic richness and divergence over a 320-year period of urbanization. J. Appl. Ecol. 54, 1152–1160 (2016).

    Article  Google Scholar 

  • 39.

    Lososová, Z. et al. Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspect. Plant Ecol. Evol. Syst. 8, 69–81 (2006).

    Article  Google Scholar 

  • 40.

    Pysek, P. Alien and native species in Central European urban floras: a quantitative comparison. J. Biogeogr. 25, 155–163 (1998).

    Article  Google Scholar 

  • 41.

    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).

    Article  Google Scholar 

  • 43.

    Schleuning, M., Fründ, J. & García, D. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography 38, 380–392 (2014).

    Article  Google Scholar 

  • 44.

    Mallinger, R. E., Gaines-Day, H. R. & Gratton, C. Do managed bees have negative effects on wild bees?: A systematic review of the literature. PLoS ONE 12, e0189268 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 45.

    Potts, S. G. et al. Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol. Entomol. 30, 78–85 (2005).

    Article  Google Scholar 

  • 46.

    Pardee, G. L. & Philpott, S. M. Native plants are the bee’s knees: local and landscape predictors of bee richness and abundance in backyard gardens. Urban Ecosyst. 17, 641–659 (2014).

    Article  Google Scholar 

  • 47.

    Ballare, K. M., Neff, J. L., Ruppel, R. & Jha, S. Multi-scalar drivers of biodiversity: local management mediates wild bee community response to regional urbanization. Ecol. Appl. 29, e01869 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Torné-Noguera, A. et al. Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. PLoS ONE 9, e97255 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 49.

    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Fetridge, E. D., Ascher, J. S. & Langellotto, G. A. The bee fauna of residential gardens in a suburb of New York City (Hymenoptera: Apoidea). Ann. Entomol. Soc. Am. 101, 1067–1077 (2008).

    Article  Google Scholar 

  • 51.

    Stang, M., Klinkhamer, P. G. L. & van der Meijden, E. Size constraints and flower abundance determine the number of interactions in a plant–flower visitor web. Oikos 112, 111–121 (2006).

    Article  Google Scholar 

  • 52.

    Scolozzi, R. & Geneletti, D. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Environ. Impact Assess. Rev. 36, 9–22 (2012).

    Article  Google Scholar 

  • 53.

    Cheptou, P.-O., Hargreaves, A. L., Bonte, D. & Jacquemyn, H. Adaptation to fragmentation: evolutionary dynamics driven by human influences. Philos. Trans. R. Soc. B Biol. Sci. 372, 2 (2017).

    Google Scholar 

  • 54.

    Hennig, E. I. & Ghazoul, J. Plant–pollinator interactions within the urban environment. Perspect. Plant Ecol. Evol. Syst. 13, 137–150 (2011).

    Article  Google Scholar 

  • 55.

    Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Quantum GIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. Available at: http://qgis.osgeo.org. (2014).

  • 57.

    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).

    Article  Google Scholar 

  • 59.

    Amiet, F. & Gesellschaft, S. E. Insecta Helvetica. A, Fauna: 12. Hymenoptera. Apidae.-T. 1. Allgemeiner Teil, Gattungsschlüssel, Gattungen Apis, Bombus und Psithyrus. (Musée d’Histoire naturelle, 1996).

  • 60.

    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Fauna Helvetica 6. Apidae 3: Halictus, Lasioglossum. Fauna Helv. 6. Apidae 3 Halictus, Lasioglossum (2001).

  • 61.

    Amiet, F., Müller, A. & Neumeyer, R. Apidae 2: Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha. 4 (Schweizerische Entomologische Gesellschaft, 1999).

  • 62.

    Hebert, P. D. N., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321 (2003).

    CAS  Article  Google Scholar 

  • 63.

    Bäßler, M., Jäger, J. E. & Werner, K. Rothmaler, W. (Begr.): Exkursionsflora von Deutschland. Bd.2: Gefäßpflanzen. 17.Aufl (Berlin: Spektrum, 1999).

  • 64.

    Jäger, J. E., Wesche, K., Ritz, C., Müller, F. & Welk, E. Rothmaler – Exkursionsflora von Deutschland, Gefäßpflanzen: Atlasband (Springer-Verlag, 2013).

  • 65.

    Westrich, P. Die Wildbienen Deutschlands (Verlag Eugen Ulmer, 2018).

  • 66.

    Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    ADS  Article  Google Scholar 

  • 67.

    Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540 (2005).

    Article  Google Scholar 

  • 68.

    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed  Article  Google Scholar 

  • 69.

    Rader, R., Bartomeus, I., Tylianakis, J. M. & Lalibert, E. The winners and losers of land use intensification: pollinator community disassembly is non-random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).

    Article  Google Scholar 

  • 70.

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article  Google Scholar 

  • 71.

    Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.15.1 (2013).

  • 72.

    Burnham, K. P. & Anderson, D. R. Multimodel inference. Sociol. Methods Res. 33, 261–304 (2004).

    MathSciNet  Article  Google Scholar 

  • 73.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 74.

    Legendre, P., Galzin, R. & Harmelin-Vivien, M. L. Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78, 547–562 (1997).

    Google Scholar 

  • 75.

    Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical Methods for Analysing Multivariate Abundance Data. R package version 4.1.3 (2020).

  • 76.

    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  • 77.

    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Sobel, M. E. Sociological methodology. In: Sociological Methodology (ed. Leinhart, S.) 290–312 (1982).

  • 79.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, New York, 2009).

    Google Scholar 

  • 80.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.r-project.org (2016).


  • Source: Ecology - nature.com

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award

    Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences