in

Defining intraspecific conservation units in the endemic Cuban Rock Iguanas (Cyclura nubila nubila)

  • 1.

    Convention on Biological Diversity. https://www.cbd.int/doc/meetings/cop-bureau/cop-bur-2007/cop-bur-2007-10-14-en.pdf (2007).

  • 2.

    Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165. https://doi.org/10.3389/fevo.2018.00165 (2018).

    Article  Google Scholar 

  • 3.

    Ralls, K., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B. & Fenster, C. B. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 11, 1–6 (2018).

    Article  Google Scholar 

  • 4.

    Ryder, O. A. Species conservation and systematics: the dilemma of subspecies. Trends Ecol. Evol. 1, 9–10 (1986).

    Article  Google Scholar 

  • 5.

    Moritz, C. Defining evolutionary significant units. Trends Ecol. Evol. 9, 373–375 (1994).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Waples, R. S. Pacific salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species Act. Marine Fish. Rev. 53, 11–22 (1991).

    Google Scholar 

  • 7.

    Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Green, D. M. Designatable units for status assessment of endangered species. Conserv. Biol. 19, 1813–1820 (2005).

    Article  Google Scholar 

  • 9.

    Brodie, J. F., Redford, K. H. & Doak, D. F. Ecological function analysis: incorporating species roles into conservation. Trends Ecol. Evol. 33, 840–850 (2018).

    PubMed  Article  Google Scholar 

  • 10.

    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

    Article  Google Scholar 

  • 11.

    Decker, E., Linke, S., Hermoso, V. & Geist, J. Incorporating ecological functions in conservation decision making. Ecol. Evol. 7, 8273–8281 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Leclerc, C., Villéger, S., Marino, C. & Bellard, C. Global changes threaten functional and taxonomic diversity of insular species worldwide. Divers. Distrib. 26, 402–414 (2020).

    Article  Google Scholar 

  • 13.

    Zipkin, E. F., DiRenzo, G. V., Ray, J. M., Rossman, S. & Lips, K. P. Tropical snake diversity collapses after widespread amphibian loss. Science 367, 814–816 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    Hedges, S. B. & Woods, C. A. Caribbean hot spot. Nature 364, 375. https://doi.org/10.1038/364375a0 (1993).

    ADS  Article  Google Scholar 

  • 15.

    Heinicke, M. P., Duellman, W. E. & Hedges, S. B. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc. Natl. Acad. Sci. 104, 10092–10097 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 16.

    ITWG (Iguana Taxonomy Working Group). A checklist of the iguanas of the world (Iguanidae; Iguaninae). Herpetol. Conserv. Biol. 11, 4–46 (2016).

  • 17.

    Henderson, R. W. Consequences of predator introductions and habitat destruction on amphibians and reptiles in the post-Columbus West Indies. Caribb. J. Sci. 28, 1–10 (1992).

    Google Scholar 

  • 18.

    Alberts, A. C. Developing recovery strategies for West Indian Rock Iguanas. Endangered Species UPDATA 16, 107–110 (1999).

    Google Scholar 

  • 19.

    Hartley, L. M., Glor, R. E., Sproston, A. L., Powell, R. & Parmer-Lee, J. S. Jr. Germination rates of seeds consumed by two species of Rock Iguanas (Cyclura spp.) in the Dominican Republic. Caribb. J. Sci. 36, 149–151 (2000).

    Google Scholar 

  • 20.

    Malone, C. L., Wheeler, T., Taylor, J. F. & Davis, S. K. Phylogeography of the Caribbean rock Iguana (Cyclura): implications for conservation and insights on the biogeographic history of the West Indies. Mol. Phylog. Evol. 17, 269–279 (2000).

    CAS  Article  Google Scholar 

  • 21.

    Alberts, A. C. et al. (eds) Iguanas-Biology and Conservation (University of California Press, California, 2004).

    Google Scholar 

  • 22.

    US Fish and Wildlife Report. Caribbean Iguana Conservation Workshop. Exploring a region-wide approach to recovery. San Juan, Puerto Rico. https://www.fws.gov/international/pdf/Caribbean-Iguana-Workshop-Proceedings.pdf (2013).

  • 23.

    González-Rossell, A. Ecologia y conservación de la iguana (Cyclura nubila nubila) en Cuba. Dissertation, Universitat d’Alacant (Alcalá de Henares, España, 2018).

  • 24.

    Rodríguez-Schettino, L. (ed.) The Iguanid lizards of Cuba (Florida University Press, Gainesville, 1999).

    Google Scholar 

  • 25.

    Day, M. Cyclura nubila. The IUCN Red List of Threatened Species; e.T6030A12338655. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.1996.RLTS.T6030A12338655.en (1996)

  • 26.

    Knapp, C. R. & Malone, C. L. Patterns of reproductive success and genetic variability in a translocated iguana population. Herpetologica 59, 195–202 (2003).

    Article  Google Scholar 

  • 27.

    Malone, C. L., Knapp, C. R., Taylor, J. F. & Davis, S. K. Genetic consequences of Pleistocene fragmentation: isolation, drift, and loss of diversity in rock iguanas (Cyclura). Conserv. Genet. 4, 1–15 (2003).

    CAS  Article  Google Scholar 

  • 28.

    An, J., Sommer, J., Shore, G. D. & Williamson, J. E. Characterization of 20 microsatellite marker loci in the West Indian Rock Iguana (Cyclura nubila). Conserv. Genet. 5, 121–125 (2004).

    CAS  Article  Google Scholar 

  • 29.

    Wildlife Conservation Society. Global Conservation Strategy. Mesoamerica and Western Caribbean. https://www.wcs.org/about-us/2020-strategy (2020).

  • 30.

    Critical Ecosystem Partnership Fund (CEPF). The Caribben Islands Biodiversity Hotspot. https://www.cepf.net/sites/default/files/final_caribbean_ep.pdf (2010).

  • 31.

    Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).

    PubMed  Article  Google Scholar 

  • 32.

    Soltis, P. S. & Soltis, D. E. Applying the bootstrap in phylogeny reconstruction. Stat. Sci. 18, 256–267 (2003).

    MathSciNet  MATH  Article  Google Scholar 

  • 33.

    Sites, J. W., Davis, S. K., Guerra, T., Iverson, J. B. & Snell, H. L. Character congruence and phylogenetic signal in molecular and morphological data sets: a case study in the living iguanas (Squamata, Iguanidae). Mol. Biol. Evol. 13, 1087–1105 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Starostova, Z., Rehak, I. & Frynta, D. New haplotypes of Cyclura nubila nubila from Cuba changed the phylogenetic tree of rock iguanas: a challenge for conservation strategies?. Amphib-reptil 31, 134–143 (2010).

    Article  Google Scholar 

  • 35.

    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Wiley-Blackwell, New York, 2006).

    Google Scholar 

  • 36.

    England, P. R., Cornuet, J. M., Berthier, P., Tallmon, D. A. & Luikart, G. Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv. Genet. 7, 303–308 (2007).

    Article  Google Scholar 

  • 37.

    Sunny, A., Monroy-Vilchis, O., Fajardo, V. & Aguilera-Reyes, U. Genetic diversity and structure of an endemic and critically endangered stream river salamander (Caudata: Ambystoma leorae) in Mexico. Conserv. Genet. 15, 49–59 (2014).

    CAS  Article  Google Scholar 

  • 38.

    Franklin, I. R. & Frankham, R. How large must populations be to retain evolutionary potential?. Anim. Conserv. 1, 79–70 (1998).

    Article  Google Scholar 

  • 39.

    Vázquez-Domínguez, E., Suárez-Atilano, M., Booth, W., González-Baca, C. & Cuarón, A. D. Genetic evidence of a recent successful colonization of introduced species on islands: Boa constrictor imperator on Cozumel Island. Biol. Invasions 14, 2101–2116 (2012).

    Article  Google Scholar 

  • 40.

    Frankham, R., Ballou, J. & Briscoe, D. Introduction to Conservation Genetics (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

  • 41.

    Iturralde-Vinent, M. A. Meso-Cenozoic Caribbean paleogeography: Implications for the historical biogeography of the region. Int. Geol. Rev. 48, 791–827 (2006).

    Article  Google Scholar 

  • 42.

    Iturralde-Vinent, M. A. & MacPhee, R. D. E. Paleogeography of the Caribbean region: Implications for Cenozoic Biogeography. Bull. Am. Mus. Nat. Hist. 238, 1–95 (1999).

    Google Scholar 

  • 43.

    Rodríguez, A. Biogeographic origin and radiation of Cuban Eleutherodactylus frogs of the auriculatus species group, inferred from mitochondrial and nuclear gene sequences. Mol. Phylog. Evol. 54, 179–186 (2010).

    Article  Google Scholar 

  • 44.

    Cobos, M. E. & Bosch, R. A. Recent and future threats to the endangered Cuban toad Peltophryne longinasus: potential additive impacts of climate change and habitat loss. Oryx 52, 116–125 (2018).

    Article  Google Scholar 

  • 45.

    Robertson, J. M. et al. Identifying evolutionarily significant units and prioritizing populations for management of islands. West. N. Am. Nat. 7, 397–411 (2014).

    Google Scholar 

  • 46.

    Burton, F. J. Revision to species of Cyclura nubila lewisi, the Grand Cayman Blue Iguana. Caribb. J. Sci. 40, 198–203 (2004).

    Google Scholar 

  • 47.

    Dinerstein, E. & Olson, D. M. A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean (The World Bank in Association with WWF, Washington, 1995).

    Google Scholar 

  • 48.

    Wasser, S. K. et al. Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc. Natl. Acad. Sci. 101, 14847–14852 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 49.

    Zhang, H. et al. Molecular tracing of confiscated pangolin scales for conservation and illegal trade monitoring in Southeast Asia. Global Ecol. Conserv. 4, 412–422 (2015).

    Google Scholar 

  • 50.

    Shaney, K. J. et al. A suite of potentially amplifiable microsatellite loci for reptiles of conservation concern from Africa and Asia. Conserv. Genet. Res. 8, 307–311 (2016).

    Article  Google Scholar 

  • 51.

    de Miranda, E. B. P. The plight of reptiles as ecological actors in the tropics. Front. Ecol. Evol. 5, 159. https://doi.org/10.3389/fevo.2017.00159 (2017).

    Article  Google Scholar 

  • 52.

    Beovides-Casas, K. & Mancina, C. A. Natural history and morphometry of the Cuban iguana (Cyclura nubila Gray, 1831) in Cayo Sijú Cuba. Anim. Biodiv. Conserv. 29, 1–8 (2006).

    Google Scholar 

  • 53.

    HACC. Guidelines for use of live amphibians and reptiles in field and laboratory research. Revised by the Herpetological Animal Care and Use Committee of the American Society of Ichthyologists and Herpetologists (Committee Chair: Steven J. Beaupre, Members: Elliott R. Jacobson, Harvey B. Lillywhite, and Kelly Zamudio) (2014).

  • 54.

    Chatterji, S. & Pachter, L. Reference based annotation with GeneMapper. Genome Biol. 7, 29. https://doi.org/10.1186/gb-2006-7-4-r29 (2006).

    CAS  Article  Google Scholar 

  • 55.

    Arévalo, E., Davis, S. K. & Sites, J. W. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Syst. Biol. 43, 387–418 (1994).

    Article  Google Scholar 

  • 56.

    Kearse, M., Moir, R., Wilson, M. & Stones-Havas, S. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249 (1995).

    Article  Google Scholar 

  • 58.

    Rice, W. R. Analysing tables of statistical test. Evolution 43, 223–225 (1989).

    PubMed  Article  Google Scholar 

  • 59.

    Van Oosterhout, C., Hutchinson, W. F., Willis, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping error in microsatellites data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article  CAS  Google Scholar 

  • 60.

    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).

    Article  Google Scholar 

  • 62.

    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers”. Bioinformatics 24, 1403–1405 (2008).

    CAS  Article  Google Scholar 

  • 63.

    Do, C. et al. NeEstimator V2: Sre-implementation of software for estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. 14, 209–214 (2014).

    CAS  Article  Google Scholar 

  • 64.

    Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Heredity 100, 106–113 (2009).

    CAS  Article  Google Scholar 

  • 65.

    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Foll, M. & Gaggiotti, O. E. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174, 875–891 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Goudet, J. FSTAT (Version 1.2): a computer program to calculate F-Statisitics. J. Heredity 86, 485–486 (1995).

    Article  Google Scholar 

  • 69.

    Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).

    Article  Google Scholar 

  • 70.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 72.

    Earl, D. A. & von Holdt, B. M. Structure-harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).

    Article  Google Scholar 

  • 73.

    Excoffier, L., Laval, G. & Schneider, S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).

    CAS  Article  Google Scholar 

  • 74.

    Kalinowski, S. T., Wagner, A. P. & Taper, M. L. ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Notes 6, 576–579 (2006).

    CAS  Article  Google Scholar 

  • 75.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 76.

    Leigh, J. W. & Bryant, D. PopART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article  Google Scholar 

  • 77.

    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Ecol. Biol. 16, 37–48 (1999).

    CAS  Article  Google Scholar 

  • 78.

    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 110. Virus Evol. https://doi.org/10.1093/ve/vey016 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 79.

    Blankers, T. et al. Contrasting global-scale evolutionary radiations: Phylogeny, diversification, and morphological evolution in the major clades of iguanian lizards. Biol. J. Linn. Soc. 108, 127–143 (2012).

    Article  Google Scholar 

  • 80.

    Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93. https://doi.org/10.1186/1471-2148-13-93 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 81.

    Carroll, R. L. Vertebrate Paleontology and Evolution (WH Freeman, New York, 1988).

    Google Scholar 

  • 82.

    Townsend, T. M. et al. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol. Phylogen. Evol. 61, 363–380 (2011).

    Article  Google Scholar 

  • 83.

    MacLeod, A. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proc. R. Soc. B 282, 20150425. https://doi.org/10.1098/rspb.2015.0425 (2015).

    Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award

    Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences