Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).
Matesanz, S., Gimeno, T. E., de la Cruz, M., Escudero, A. & Valladares, F. Competition may explain the fine-scale spatial patterns and genetic structure of two co-occurring plant congeners: Spatial genetic structure of congeneric plants. J. Ecol. 99, 838–848 (2011).
Fridley, J. D., Grime, J. P. & Bilton, M. Genetic identity of interspecific neighbours mediates plant responses to competition and environmental variation in a species-rich grassland. J. Ecol. 95, 908–915 (2007).
Baron, E., Richirt, J., Villoutreix, R., Amsellem, L. & Roux, F. The genetics of intra- and interspecific competitive response and effect in a local population of an annual plant species. Funct. Ecol. 29, 1361–1370 (2015).
McGoey, B. V. & Stinchcombe, J. R. Interspecific competition alters natural selection on shade avoidance phenotypes in Impatiens capensis. New Phytol. 183, 880–891 (2009).
Vellend, M. The Consequences of genetic diversity in competitive communities. Ecology 87, 304–311 (2006).
Turkington, R. The growth, distribution and neighbours relationships of Trifolium repens in a permanent pasture. VI. Conditioning effects by neighbours. J. Ecol. 77, 734 (1989).
Sultan, E. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl. 44, 363–383 (1995).
Via, S. et al. Adaptive phenotypic plasticity: Consensus and controversy. Trends Ecol. Evol. 10, 212–217 (1995).
Vermeulen, P. J. On selection for flowering time plasticity in response to density. New Phytol. 205, 429–439 (2015).
Geber, M. A. & Griffen, L. R. Inheritance and natural selection on functional traits. Int. J. Plant Sci. 164, S21–S42 (2003).
Dudley, S. A. & Schmitt, J. Testing the adaptive plasticity hypothesis: Density-dependent selection on manipulated stem length in Impatiens capensis. Am. Nat. 147, 445–465 (1996).
Boege, K. Induced responses to competition and herbivory: Natural selection on multi-trait phenotypic plasticity. Ecology 91, 2628–2637 (2010).
Munguía-Rosas, M. A., Ollerton, J., Parra-Tabla, V. & De-Nova, J. A. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol. Lett. 14, 511–521 (2011).
Weis, A., Wadgymar, S., Sekor, M. & Franks, S. The shape of selection: Using alternative fitness functions to test predictions for selection on flowering time. Evol. Ecol. 28, 885–904 (2014).
Juenger, T., Lennartsson, T. & Tuomi, J. The evolution of tolerance to damage in Gentianella campestris: Natural selection and the quantitative genetics of tolerance. Evol. Ecol. 14, 393 (2000).
Kenney, A. M., McKay, J. K., Richards, J. H. & Juenger, T. E. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ13 C), and WUE plasticity to drought in Arabidopsis thaliana. Ecol. Evol. 4, 4505–4521 (2014).
Leverett, L. D., Iv, G. F. S. & Donohue, K. The fitness benefits of germinating later than neighbors. Am. J. Bot. 105, 20–30 (2018).
Weinig, C., Johnston, J., German, Z. M. & Demink, L. M. Local and global costs of adaptive plasticity to density in Arabidopsis thaliana. Am. Nat. 167, 826–836 (2006).
Callahan, H. S. & Pigliucci, M. Shade-Induced plasticity and its ecological significance in wild populations of Arabidopsis thaliana. Ecology 83, 1965–1980 (2002).
Manzano-Piedras, E., Marcer, A., Alonso-Blanco, C. & Picó, F. X. Deciphering the adjustment between environment and life history in annuals: Lessons from a geographically-explicit approach in Arabidopsis thaliana. PLoS ONE 9, e87836 (2014).
Sandring, S., Riihimäki, M.-A., Savolainen, O. & Ågren, J. Selection on flowering time and floral display in an alpine and a lowland population of Arabidopsis lyrata. J. Evol. Biol. 20, 558–567 (2007).
Weinig, C. Differing selection in alternative competitive environments: Shade-avoidance responses and germination timing. Evolution 54, 124–136 (2000).
Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
Pigliucci, M. & Kolodynska, A. Phenotypic plasticity to light intensity in Arabidopsis thaliana: Invariance of reaction norms and phenotypic integration. Evol. Ecol. 16, 27–47 (2002).
Pigliucci, M. & Preston, K. A. Phenotypic Integration. Studying the Ecology and Evolution of Complex Phenotypes (Oxford University Press, Oxford, 2004).
Schlichting, C. D. Phenotypic integration and environmental change. Bioscience 39, 460–464 (1989).
Brock, M. T. & Weinig, C. Plasticity and environment-specific covariances: An investigation of floral–vegetative and within flower correlations. Evolution 61, 2913–2924 (2007).
Lind, M. I., Yarlett, K., Reger, J., Carter, M. J. & Beckerman, A. P. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection. Proc. R. Soc. B Biol. Sci. 282, 20151651 (2015).
Crespi, B. J. The evolution of maladaptation. Heredity 84, 623 (2000).
DeWitt, T. J. & Scheiner, S. M. Phenotypic Plasticity: Functional and Conceptual Approaches (Oxford University Press, Oxford, 2004).
Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).
Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).
Palacio-López, K., Beckage, B., Scheiner, S. & Molofsky, J. The ubiquity of phenotypic plasticity in plants: A synthesis. Ecol. Evol. 5, 3389–3400 (2015).
Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).
Goldberg, D. E. & Barton, A. M. Patterns and consequences of interspecific competition in natural communities: A review of field experiments with plants. Am. Nat. 139, 771–801 (1992).
Van Kleunen, M. & Fischer, M. Constraints on the evolution of adaptive phenotypic plasticity in plants: Research review. New Phytol. 166, 49–60 (2005).
Stinchcombe, J. R., Dorn, L. A. & Schmitt, J. Flowering time plasticity in Arabidopsis thaliana: A reanalysis of Westerman & Lawrence (1970): Flowering time plasticity in Arabidopsis. J. Evol. Biol. 17, 197–207 (2003).
Scheiner, S. M. & Holt, R. D. The genetics of phenotypic plasticity. X. Variation versus uncertainty: Plasticity, variation, and uncertainty. Ecol. Evol. 2, 751–767 (2012).
Scheiner, S. M. Bet-hedging as a complex interaction among developmental instability, environmental heterogeneity, dispersal, and life-history strategy. Ecol. Evol. 4, 505–515 (2014).
DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).
Dechaine, J. M., Johnston, J. A., Brock, M. T. & Weinig, C. Constraints on the evolution of adaptive plasticity: Costs of plasticity to density are expressed in segregating progenies. New Phytol. 176, 874–882 (2007).
Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).
Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B Biol. Sci. 277, 503–511 (2010).
Callahan, H. S., Maughan, H. & Steiner, U. K. Phenotypic plasticity, costs of phenotypes, and costs of plasticity. Ann. N. Y. Acad. Sci. 1133, 44–66 (2008).
Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).
Calsbeek, B., Lavergne, S., Patel, M. & Molofsky, J. Comparing the genetic architecture and potential response to selection of invasive and native populations of reed canary grass. Evol. Appl. 4, 726–735 (2011).
Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).
Agrawal, A. F. & Whitlock, M. C. Environmental duress and epistasis: How does stress affect the strength of selection on new mutations?. Trends Ecol. Evol. 25, 450–458 (2010).
Arbuthnott, D. & Whitlock, M. C. Environmental stress does not increase the mean strength of selection. J. Evol. Biol. 31, 1599–1606 (2018).
Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120085 (2013).
Wood, C. W. & Brodie, E. D. Evolutionary response when selection and genetic variation covary across environments. Ecol. Lett. 19, 1189–1200 (2016).
Rowiński, P. K. & Rogell, B. Environmental stress correlates with increases in both genetic and residual variances: A meta-analysis of animal studies. Evolution 71, 1339–1351 (2017).
Stanton, M. L., Roy, B. A. & Thiede, D. A. Evolution in stressful environments. I. Phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stresses. Evolution 54, 93–111 (2000).
Weigelt, A., Steinlein, T. & Beyschlag, W. Does plant competition intensity rather depend on biomass or on species identity?. Basic Appl. Ecol. 3, 85–94 (2002).
Dostál, P. Plant competitive interactions and invasiveness: Searching for the effects of phylogenetic relatedness and origin on competition intensity. Am. Nat. 177, 655–667 (2011).
Gaudet, C. L. & Keddy, P. A. A comparative approach to predicting competitive ability from plant traits. Nature 334, 242–243 (1988).
Goldberg, D. E. & Werner, P. A. Equivalence of competitors in plant communities: A null hypothesis and a field experimental approach. Am. J. Bot. 70, 1098–1104 (1983).
Débarre, F. & Gandon, S. Evolution in heterogeneous environments: Between soft and hard selection. Am. Nat. 177, E84–E97 (2011).
Kelley, J. L., Stinchcombe, J. R., Weinig, C. & Schmitt, J. Soft and hard selection on plant defence traits in Arabidopsis thaliana. Evol. Ecol. Res. 7, 287–302 (2005).
Austen, E. J., Rowe, L., Stinchcombe, J. R. & Forrest, J. R. K. Explaining the apparent paradox of persistent selection for early flowering. New Phytol. 215, 929–934 (2017).
Lorts, C. M. & Lasky, J. R. Competition × drought interactions change phenotypic plasticity and the direction of selection on Arabidopsis traits. New Phytol. https://doi.org/10.1111/nph.16593 (2020).
Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. 104, 1278–1282 (2007).
Forrest, J. R. K. Plant size, sexual selection, and the evolution of protandry in dioecious plants. Am. Nat. 184, 338–351 (2014).
Wilczek, A. M. et al. Effects of genetic perturbation on seasonal life history plasticity. Science 323, 930–934 (2009).
Elzinga, J. A. et al. Time after time: Flowering phenology and biotic interactions. Trends Ecol. Evol. 22, 432–439 (2007).
Mitchell-Olds, T. Genetic constraints on life-history evolution: Quantitative-trait loci influencing growth and flowering in Arabidopsis thaliana. Evolution 50, 140 (1996).
Fournier-Level, A. et al. Paths to selection on life history loci in different natural environments across the native range of Arabidopsis thaliana. Mol. Ecol. 22, 3552–3566 (2013).
Hall, M. C., Dworkin, I., Ungerer, M. C. & Purugganan, M. Genetics of microenvironmental canalization in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 104, 13717–13722 (2007).
Cho, L.-H., Yoon, J. & An, G. The control of flowering time by environmental factors. Plant J. 90, 708–719 (2017).
Pérez-Pérez, J. M., Serrano-Cartagena, J. & Micol, J. L. Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics 162, 24 (2002).
Samis, K. E., Stinchcombe, J. R. & Murren, C. J. Population climatic history predicts phenotypic responses in novel environments for Arabidopsis thaliana in North America. Am. J. Bot. 106, 1068–1080 (2019).
Taylor, M. A. et al. Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 116, 17890–17899 (2019).
Donohue, K., Messiqua, D., Pyle, E. H., Heschel, M. S. & Schmitt, J. Evidence of adaptive divergence in plasticity: Density- and site-dependent selection on shade-avoidance responses in Impatiens capensis. Evolution 6, 13 (2000).
Huber, H. et al. Frequency and microenvironmental pattern of selection on plastic shade-avoidance traits in a natural population of Impatiens capensis. Am. Nat. 163, 548–563 (2004).
Stinchcombe, J. R., Agrawal, A. F., Hohenlohe, P. A., Arnold, S. J. & Blows, M. W. Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing?. Evolution 62, 2435–2440 (2008).
Callahan, H. S., Dhanoolal, N. & Ungerer, M. C. Plasticity genes and plasticity costs: A new approach using an Arabidopsis recombinant inbred population. New Phytol. 166, 129–140 (2005).
Arnold, P. A., Nicotra, A. B. & Kruuk, L. E. B. Sparse evidence for selection on phenotypic plasticity in response to temperature. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180185 (2019).
Acasuso-Rivero, C., Murren, C. J., Schlichting, C. D. & Steiner, U. K. Adaptive phenotypic plasticity for life-history and less fitness-related traits. Proc. R. Soc. B Biol. Sci. 286, 20190653 (2019).
Crispo, E. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J. Evol. Biol. 21, 1460–1469 (2008).
Scheiner, S. M. The genetics of phenotypic plasticity. XII. Temporal and spatial heterogeneity. Ecol. Evol. 3, 4596–4609 (2013).
Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).
Fordyce, J. A. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 209, 2377–2383 (2006).
Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).
Matesanz, S., Gianoli, E. & Valladares, F. Global change and the evolution of phenotypic plasticity in plants: Global change and plasticity. Ann. N. Y. Acad. Sci. 1206, 35–55 (2010).
Valladares, F., Gianoli, E. & Gómez, J. M. Ecological limits to plant phenotypic plasticity. New Phytol. 176, 749–763 (2007).
Callaway, R. M., Pennings, S. C. & Richards, C. L. Phenotypic plasticity and interactions among plants. Ecology 84, 1115–1128 (2003).
Chevin, L.-M. & Hoffmann, A. A. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160138 (2017).
Pigliucci, M. Ecology and evolutionary biology of Arabidopsis. Arab. Book 1, e0003 (2002).
Volis, S., Verhoeven, K. J. F., Mendlinger, S. & Ward, D. Phenotypic selection and regulation of reproduction in different environments in wild barley. J. Evol. Biol. 17, 1121–1131 (2004).
Sgrò, C. M. & Hoffmann, A. A. Genetic correlations, tradeoffs and environmental variation. Heredity 93, 241–248 (2004).
Reger, J., Lind, M. I., Robinson, M. R. & Beckerman, A. P. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evol. 2, 100–107 (2018).
Gianoli, E. & Palacio-López, K. Phenotypic integration may constrain phenotypic plasticity in plants. Oikos 118, 1924–1928 (2009).
Godoy, O., Valladares, F. & Castro-Díez, P. The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. New Phytol. 195, 912–922 (2012).
Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).
Vasseur, F. et al. Climate as a driver of adaptive variations in ecological strategies in Arabidopsis thaliana. Ann. Bot. https://doi.org/10.1101/404210 (2018).
Hovick, S. M. & Whitney, K. D. Propagule pressure and genetic diversity enhance colonization by a ruderal species: A multi-generation field experiment. Ecol. Monogr. 89, e01368sa (2019).
Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).
Roach, D. A. & Wulff, R. D. Maternal effects in plants. Annu. Rev. Ecol. Syst. 18, 209–235 (1987).
McGlothlin, J. W. & Galloway, L. F. The contribution of maternal effects to selection response: An empirical test of competing models. Evolution 68, 549–558 (2014).
Dechaine, J., Brock, M. & Weinig, C. Maternal environmental effects of competition influence evolutionary potential in rapeseed (Brassica rapa). Evol. Ecol. 29, 77–91 (2015).
Beddows, A. R. Lolium Multiflorum Lam. J. Ecol. 61, 587–600 (1973).
Vilà, M., Gómez, A. & Maron, J. L. Are alien plants more competitive than their native conspecifics? A test using Hypericum perforatum L. Oecologia 137, 211–215 (2003).
Veiga, R. S. L. et al. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 36, 1926–1937 (2013).
Scheiner, S. M. & Callahan, H. S. Measuring natural selection on phenotypic plasticity. Evolution 53, 1704–1713 (1999).
Wender, N. J., Polisetty, C. R. & Donohue, K. Density-dependent processes influencing the evolutionary dynamics of dispersal: A functional analysis of seed dispersal in Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 92, 960–971 (2005).
Brachi, B., Aimé, C., Glorieux, C., Cuguen, J. & Roux, F. Adaptive value of phenological traits in stressful environments: Predictions based on seed production and laboratory natural election. PLoS ONE 7, e32069 (2012).
Li, B., Suzuki, J.-I. & Hara, T. Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia 115, 293–301 (1998).
Ågren, J., Oakley, C. G., McKay, J. K., Lovell, J. T. & Schemske, D. W. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 110, 21077–21082 (2013).
Sokal, R. R. & James, R. F. Biometry the Principles and Practice of Statistics in Biological Research (W.H. Freeman, New York, 1995).
Stinchcombe, J. R. et al. Testing for environmentally induced bias in phenotypic estimates of natural selection: Theory and practice. Am. Nat. 160, 13 (2002).
Fischer, E. K., Ghalambor, C. K. & Hoke, K. L. Plasticity and evolution in correlated suites of traits. J. Evol. Biol. 29, 991–1002 (2016).
Handelsman, C. A., Ruell, E. W., Torres-Dowdall, J. & Ghalambor, C. K. Phenotypic plasticity changes correlations of traits following experimental introductions of Trinidadian guppies (Poecilia reticulata). Integr. Comp. Biol. 54, 794–804 (2014).
Source: Ecology - nature.com