in

Natural selection on traits and trait plasticity in Arabidopsis thaliana varies across competitive environments

  • 1.

    Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).

    Article  Google Scholar 

  • 2.

    Matesanz, S., Gimeno, T. E., de la Cruz, M., Escudero, A. & Valladares, F. Competition may explain the fine-scale spatial patterns and genetic structure of two co-occurring plant congeners: Spatial genetic structure of congeneric plants. J. Ecol. 99, 838–848 (2011).

    CAS  Article  Google Scholar 

  • 3.

    Fridley, J. D., Grime, J. P. & Bilton, M. Genetic identity of interspecific neighbours mediates plant responses to competition and environmental variation in a species-rich grassland. J. Ecol. 95, 908–915 (2007).

    Article  Google Scholar 

  • 4.

    Baron, E., Richirt, J., Villoutreix, R., Amsellem, L. & Roux, F. The genetics of intra- and interspecific competitive response and effect in a local population of an annual plant species. Funct. Ecol. 29, 1361–1370 (2015).

    Article  Google Scholar 

  • 5.

    McGoey, B. V. & Stinchcombe, J. R. Interspecific competition alters natural selection on shade avoidance phenotypes in Impatiens capensis. New Phytol. 183, 880–891 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Vellend, M. The Consequences of genetic diversity in competitive communities. Ecology 87, 304–311 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Turkington, R. The growth, distribution and neighbours relationships of Trifolium repens in a permanent pasture. VI. Conditioning effects by neighbours. J. Ecol. 77, 734 (1989).

    Article  Google Scholar 

  • 8.

    Sultan, E. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl. 44, 363–383 (1995).

    Article  Google Scholar 

  • 9.

    Via, S. et al. Adaptive phenotypic plasticity: Consensus and controversy. Trends Ecol. Evol. 10, 212–217 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Vermeulen, P. J. On selection for flowering time plasticity in response to density. New Phytol. 205, 429–439 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Geber, M. A. & Griffen, L. R. Inheritance and natural selection on functional traits. Int. J. Plant Sci. 164, S21–S42 (2003).

    Article  Google Scholar 

  • 12.

    Dudley, S. A. & Schmitt, J. Testing the adaptive plasticity hypothesis: Density-dependent selection on manipulated stem length in Impatiens capensis. Am. Nat. 147, 445–465 (1996).

    Article  Google Scholar 

  • 13.

    Boege, K. Induced responses to competition and herbivory: Natural selection on multi-trait phenotypic plasticity. Ecology 91, 2628–2637 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Munguía-Rosas, M. A., Ollerton, J., Parra-Tabla, V. & De-Nova, J. A. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol. Lett. 14, 511–521 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Weis, A., Wadgymar, S., Sekor, M. & Franks, S. The shape of selection: Using alternative fitness functions to test predictions for selection on flowering time. Evol. Ecol. 28, 885–904 (2014).

    Article  Google Scholar 

  • 16.

    Juenger, T., Lennartsson, T. & Tuomi, J. The evolution of tolerance to damage in Gentianella campestris: Natural selection and the quantitative genetics of tolerance. Evol. Ecol. 14, 393 (2000).

    Article  Google Scholar 

  • 17.

    Kenney, A. M., McKay, J. K., Richards, J. H. & Juenger, T. E. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ13 C), and WUE plasticity to drought in Arabidopsis thaliana. Ecol. Evol. 4, 4505–4521 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Leverett, L. D., Iv, G. F. S. & Donohue, K. The fitness benefits of germinating later than neighbors. Am. J. Bot. 105, 20–30 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Weinig, C., Johnston, J., German, Z. M. & Demink, L. M. Local and global costs of adaptive plasticity to density in Arabidopsis thaliana. Am. Nat. 167, 826–836 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Callahan, H. S. & Pigliucci, M. Shade-Induced plasticity and its ecological significance in wild populations of Arabidopsis thaliana. Ecology 83, 1965–1980 (2002).

    Article  Google Scholar 

  • 21.

    Manzano-Piedras, E., Marcer, A., Alonso-Blanco, C. & Picó, F. X. Deciphering the adjustment between environment and life history in annuals: Lessons from a geographically-explicit approach in Arabidopsis thaliana. PLoS ONE 9, e87836 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Sandring, S., Riihimäki, M.-A., Savolainen, O. & Ågren, J. Selection on flowering time and floral display in an alpine and a lowland population of Arabidopsis lyrata. J. Evol. Biol. 20, 558–567 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Weinig, C. Differing selection in alternative competitive environments: Shade-avoidance responses and germination timing. Evolution 54, 124–136 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Pigliucci, M. & Kolodynska, A. Phenotypic plasticity to light intensity in Arabidopsis thaliana: Invariance of reaction norms and phenotypic integration. Evol. Ecol. 16, 27–47 (2002).

    Article  Google Scholar 

  • 26.

    Pigliucci, M. & Preston, K. A. Phenotypic Integration. Studying the Ecology and Evolution of Complex Phenotypes (Oxford University Press, Oxford, 2004).

    Google Scholar 

  • 27.

    Schlichting, C. D. Phenotypic integration and environmental change. Bioscience 39, 460–464 (1989).

    Article  Google Scholar 

  • 28.

    Brock, M. T. & Weinig, C. Plasticity and environment-specific covariances: An investigation of floral–vegetative and within flower correlations. Evolution 61, 2913–2924 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Lind, M. I., Yarlett, K., Reger, J., Carter, M. J. & Beckerman, A. P. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection. Proc. R. Soc. B Biol. Sci. 282, 20151651 (2015).

    Article  Google Scholar 

  • 30.

    Crespi, B. J. The evolution of maladaptation. Heredity 84, 623 (2000).

    PubMed  Article  Google Scholar 

  • 31.

    DeWitt, T. J. & Scheiner, S. M. Phenotypic Plasticity: Functional and Conceptual Approaches (Oxford University Press, Oxford, 2004).

    Google Scholar 

  • 32.

    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).

    Article  Google Scholar 

  • 34.

    Palacio-López, K., Beckage, B., Scheiner, S. & Molofsky, J. The ubiquity of phenotypic plasticity in plants: A synthesis. Ecol. Evol. 5, 3389–3400 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).

    PubMed  Article  Google Scholar 

  • 36.

    Goldberg, D. E. & Barton, A. M. Patterns and consequences of interspecific competition in natural communities: A review of field experiments with plants. Am. Nat. 139, 771–801 (1992).

    Article  Google Scholar 

  • 37.

    Van Kleunen, M. & Fischer, M. Constraints on the evolution of adaptive phenotypic plasticity in plants: Research review. New Phytol. 166, 49–60 (2005).

    PubMed  Article  Google Scholar 

  • 38.

    Stinchcombe, J. R., Dorn, L. A. & Schmitt, J. Flowering time plasticity in Arabidopsis thaliana: A reanalysis of Westerman & Lawrence (1970): Flowering time plasticity in Arabidopsis. J. Evol. Biol. 17, 197–207 (2003).

    Article  Google Scholar 

  • 39.

    Scheiner, S. M. & Holt, R. D. The genetics of phenotypic plasticity. X. Variation versus uncertainty: Plasticity, variation, and uncertainty. Ecol. Evol. 2, 751–767 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Scheiner, S. M. Bet-hedging as a complex interaction among developmental instability, environmental heterogeneity, dispersal, and life-history strategy. Ecol. Evol. 4, 505–515 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Dechaine, J. M., Johnston, J. A., Brock, M. T. & Weinig, C. Constraints on the evolution of adaptive plasticity: Costs of plasticity to density are expressed in segregating progenies. New Phytol. 176, 874–882 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B Biol. Sci. 277, 503–511 (2010).

    Article  Google Scholar 

  • 45.

    Callahan, H. S., Maughan, H. & Steiner, U. K. Phenotypic plasticity, costs of phenotypes, and costs of plasticity. Ann. N. Y. Acad. Sci. 1133, 44–66 (2008).

    ADS  PubMed  Article  Google Scholar 

  • 46.

    Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).

    PubMed  Article  Google Scholar 

  • 47.

    Calsbeek, B., Lavergne, S., Patel, M. & Molofsky, J. Comparing the genetic architecture and potential response to selection of invasive and native populations of reed canary grass. Evol. Appl. 4, 726–735 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 49.

    Agrawal, A. F. & Whitlock, M. C. Environmental duress and epistasis: How does stress affect the strength of selection on new mutations?. Trends Ecol. Evol. 25, 450–458 (2010).

    PubMed  Article  Google Scholar 

  • 50.

    Arbuthnott, D. & Whitlock, M. C. Environmental stress does not increase the mean strength of selection. J. Evol. Biol. 31, 1599–1606 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120085 (2013).

    Article  Google Scholar 

  • 52.

    Wood, C. W. & Brodie, E. D. Evolutionary response when selection and genetic variation covary across environments. Ecol. Lett. 19, 1189–1200 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Rowiński, P. K. & Rogell, B. Environmental stress correlates with increases in both genetic and residual variances: A meta-analysis of animal studies. Evolution 71, 1339–1351 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 54.

    Stanton, M. L., Roy, B. A. & Thiede, D. A. Evolution in stressful environments. I. Phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stresses. Evolution 54, 93–111 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Weigelt, A., Steinlein, T. & Beyschlag, W. Does plant competition intensity rather depend on biomass or on species identity?. Basic Appl. Ecol. 3, 85–94 (2002).

    Article  Google Scholar 

  • 56.

    Dostál, P. Plant competitive interactions and invasiveness: Searching for the effects of phylogenetic relatedness and origin on competition intensity. Am. Nat. 177, 655–667 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Gaudet, C. L. & Keddy, P. A. A comparative approach to predicting competitive ability from plant traits. Nature 334, 242–243 (1988).

    ADS  Article  Google Scholar 

  • 58.

    Goldberg, D. E. & Werner, P. A. Equivalence of competitors in plant communities: A null hypothesis and a field experimental approach. Am. J. Bot. 70, 1098–1104 (1983).

    Article  Google Scholar 

  • 59.

    Débarre, F. & Gandon, S. Evolution in heterogeneous environments: Between soft and hard selection. Am. Nat. 177, E84–E97 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Kelley, J. L., Stinchcombe, J. R., Weinig, C. & Schmitt, J. Soft and hard selection on plant defence traits in Arabidopsis thaliana. Evol. Ecol. Res. 7, 287–302 (2005).

    Google Scholar 

  • 61.

    Austen, E. J., Rowe, L., Stinchcombe, J. R. & Forrest, J. R. K. Explaining the apparent paradox of persistent selection for early flowering. New Phytol. 215, 929–934 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Lorts, C. M. & Lasky, J. R. Competition × drought interactions change phenotypic plasticity and the direction of selection on Arabidopsis traits. New Phytol. https://doi.org/10.1111/nph.16593 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. 104, 1278–1282 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Forrest, J. R. K. Plant size, sexual selection, and the evolution of protandry in dioecious plants. Am. Nat. 184, 338–351 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Wilczek, A. M. et al. Effects of genetic perturbation on seasonal life history plasticity. Science 323, 930–934 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Elzinga, J. A. et al. Time after time: Flowering phenology and biotic interactions. Trends Ecol. Evol. 22, 432–439 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Mitchell-Olds, T. Genetic constraints on life-history evolution: Quantitative-trait loci influencing growth and flowering in Arabidopsis thaliana. Evolution 50, 140 (1996).

    PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Fournier-Level, A. et al. Paths to selection on life history loci in different natural environments across the native range of Arabidopsis thaliana. Mol. Ecol. 22, 3552–3566 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Hall, M. C., Dworkin, I., Ungerer, M. C. & Purugganan, M. Genetics of microenvironmental canalization in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 104, 13717–13722 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Cho, L.-H., Yoon, J. & An, G. The control of flowering time by environmental factors. Plant J. 90, 708–719 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Pérez-Pérez, J. M., Serrano-Cartagena, J. & Micol, J. L. Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics 162, 24 (2002).

    Google Scholar 

  • 72.

    Samis, K. E., Stinchcombe, J. R. & Murren, C. J. Population climatic history predicts phenotypic responses in novel environments for Arabidopsis thaliana in North America. Am. J. Bot. 106, 1068–1080 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Taylor, M. A. et al. Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 116, 17890–17899 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Donohue, K., Messiqua, D., Pyle, E. H., Heschel, M. S. & Schmitt, J. Evidence of adaptive divergence in plasticity: Density- and site-dependent selection on shade-avoidance responses in Impatiens capensis. Evolution 6, 13 (2000).

    Google Scholar 

  • 75.

    Huber, H. et al. Frequency and microenvironmental pattern of selection on plastic shade-avoidance traits in a natural population of Impatiens capensis. Am. Nat. 163, 548–563 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Stinchcombe, J. R., Agrawal, A. F., Hohenlohe, P. A., Arnold, S. J. & Blows, M. W. Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing?. Evolution 62, 2435–2440 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Callahan, H. S., Dhanoolal, N. & Ungerer, M. C. Plasticity genes and plasticity costs: A new approach using an Arabidopsis recombinant inbred population. New Phytol. 166, 129–140 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Arnold, P. A., Nicotra, A. B. & Kruuk, L. E. B. Sparse evidence for selection on phenotypic plasticity in response to temperature. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180185 (2019).

    Article  Google Scholar 

  • 79.

    Acasuso-Rivero, C., Murren, C. J., Schlichting, C. D. & Steiner, U. K. Adaptive phenotypic plasticity for life-history and less fitness-related traits. Proc. R. Soc. B Biol. Sci. 286, 20190653 (2019).

    Article  Google Scholar 

  • 80.

    Crispo, E. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J. Evol. Biol. 21, 1460–1469 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Scheiner, S. M. The genetics of phenotypic plasticity. XII. Temporal and spatial heterogeneity. Ecol. Evol. 3, 4596–4609 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Fordyce, J. A. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 209, 2377–2383 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Matesanz, S., Gianoli, E. & Valladares, F. Global change and the evolution of phenotypic plasticity in plants: Global change and plasticity. Ann. N. Y. Acad. Sci. 1206, 35–55 (2010).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 86.

    Valladares, F., Gianoli, E. & Gómez, J. M. Ecological limits to plant phenotypic plasticity. New Phytol. 176, 749–763 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Callaway, R. M., Pennings, S. C. & Richards, C. L. Phenotypic plasticity and interactions among plants. Ecology 84, 1115–1128 (2003).

    Article  Google Scholar 

  • 88.

    Chevin, L.-M. & Hoffmann, A. A. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160138 (2017).

    Article  Google Scholar 

  • 89.

    Pigliucci, M. Ecology and evolutionary biology of Arabidopsis. Arab. Book 1, e0003 (2002).

    Article  Google Scholar 

  • 90.

    Volis, S., Verhoeven, K. J. F., Mendlinger, S. & Ward, D. Phenotypic selection and regulation of reproduction in different environments in wild barley. J. Evol. Biol. 17, 1121–1131 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 91.

    Sgrò, C. M. & Hoffmann, A. A. Genetic correlations, tradeoffs and environmental variation. Heredity 93, 241–248 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 92.

    Reger, J., Lind, M. I., Robinson, M. R. & Beckerman, A. P. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evol. 2, 100–107 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 93.

    Gianoli, E. & Palacio-López, K. Phenotypic integration may constrain phenotypic plasticity in plants. Oikos 118, 1924–1928 (2009).

    Article  Google Scholar 

  • 94.

    Godoy, O., Valladares, F. & Castro-Díez, P. The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. New Phytol. 195, 912–922 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 95.

    Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 96.

    Vasseur, F. et al. Climate as a driver of adaptive variations in ecological strategies in Arabidopsis thaliana. Ann. Bot. https://doi.org/10.1101/404210 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 97.

    Hovick, S. M. & Whitney, K. D. Propagule pressure and genetic diversity enhance colonization by a ruderal species: A multi-generation field experiment. Ecol. Monogr. 89, e01368sa (2019).

    Article  Google Scholar 

  • 98.

    Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 99.

    Roach, D. A. & Wulff, R. D. Maternal effects in plants. Annu. Rev. Ecol. Syst. 18, 209–235 (1987).

    Article  Google Scholar 

  • 100.

    McGlothlin, J. W. & Galloway, L. F. The contribution of maternal effects to selection response: An empirical test of competing models. Evolution 68, 549–558 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 101.

    Dechaine, J., Brock, M. & Weinig, C. Maternal environmental effects of competition influence evolutionary potential in rapeseed (Brassica rapa). Evol. Ecol. 29, 77–91 (2015).

    Article  Google Scholar 

  • 102.

    Beddows, A. R. Lolium Multiflorum Lam. J. Ecol. 61, 587–600 (1973).

    Article  Google Scholar 

  • 103.

    Vilà, M., Gómez, A. & Maron, J. L. Are alien plants more competitive than their native conspecifics? A test using Hypericum perforatum L. Oecologia 137, 211–215 (2003).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 104.

    Veiga, R. S. L. et al. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 36, 1926–1937 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 105.

    Scheiner, S. M. & Callahan, H. S. Measuring natural selection on phenotypic plasticity. Evolution 53, 1704–1713 (1999).

    PubMed  Article  PubMed Central  Google Scholar 

  • 106.

    Wender, N. J., Polisetty, C. R. & Donohue, K. Density-dependent processes influencing the evolutionary dynamics of dispersal: A functional analysis of seed dispersal in Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 92, 960–971 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 107.

    Brachi, B., Aimé, C., Glorieux, C., Cuguen, J. & Roux, F. Adaptive value of phenological traits in stressful environments: Predictions based on seed production and laboratory natural election. PLoS ONE 7, e32069 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 108.

    Li, B., Suzuki, J.-I. & Hara, T. Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia 115, 293–301 (1998).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 109.

    Ågren, J., Oakley, C. G., McKay, J. K., Lovell, J. T. & Schemske, D. W. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 110, 21077–21082 (2013).

    ADS  Article  CAS  Google Scholar 

  • 110.

    Sokal, R. R. & James, R. F. Biometry the Principles and Practice of Statistics in Biological Research (W.H. Freeman, New York, 1995).

    Google Scholar 

  • 111.

    Stinchcombe, J. R. et al. Testing for environmentally induced bias in phenotypic estimates of natural selection: Theory and practice. Am. Nat. 160, 13 (2002).

    Article  Google Scholar 

  • 112.

    Fischer, E. K., Ghalambor, C. K. & Hoke, K. L. Plasticity and evolution in correlated suites of traits. J. Evol. Biol. 29, 991–1002 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 113.

    Handelsman, C. A., Ruell, E. W., Torres-Dowdall, J. & Ghalambor, C. K. Phenotypic plasticity changes correlations of traits following experimental introductions of Trinidadian guppies (Poecilia reticulata). Integr. Comp. Biol. 54, 794–804 (2014).

    PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award

    Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences