in

Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions

  • 1.

    Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Blainey, P. C., Mosier, A. C., Potanina, A., Francis, C. A. & Quake, S. R. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS ONE 6, e16626 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Thomas, T., Gilbert, J. & Meyer, F. Metagenomics -– a guide from sampling to data analysis. Microb. Inform. Exp. 2, 3 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Horgan, R. P. & Kenny, L. C. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol 13, 189–195 (2011).

    Google Scholar 

  • 5.

    Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Yu, F. B. et al. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. eLife 6, e26580 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Mukherjee, S. et al. Genomes OnLine database (GOLD) v.7: updates and new features. Nucleic Acids Res 47, D649–D659 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Methods 14, 1045–1054 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Berry, D. & Loy, A. Stable-isotope probing of human and animal microbiome function. Trends Microbiol 26, 999–1007 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Manefield, M., Whiteley, A. S., Griffiths, R. I. & Bailey, M. J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68, 5367–5373 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Dumont, M. G. & Murrell, J. C. Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Wilhelm, R. C., Singh, R., Eltis, L. D. & Mohn, W. W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13, 413–429 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Wang, Y., Huang, W. E., Cui, L. & Wagner, M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr. Opin. Biotechnol. 41, 34–42 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Haider, S. et al. Raman microspectroscopy reveals long-term extracellular activity of chlamydiae. Mol. Microbiol 77, 687–700 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Huang, W. E. et al. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9, 1878–1889 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Wagner, M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Berry, D. et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc. Natl Acad. Sci. USA 112, E194–E203 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Malmstrom, R. R. & Eloe-Fadrosh, E. A. Advancing genome-resolved metagenomics beyond the shotgun. mSystems 4, e00118–e00119 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Neufeld, J. D. et al. DNA stable-isotope probing. Nat. Protoc. 2, 860–866 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Jing, X. et al. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean. Environ. Microbiol. 20, 2241–2255 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Wang, Y. et al. Raman activated cell ejection for isolation of single cells. Anal. Chem. 85, 10697–10701 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Singer, E., Wagner, M. & Woyke, T. Capturing the genetic makeup of the active microbiome in situ. ISME J 11, 1949–1963 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Huang, W. E., Ward, A. D. & Whiteley, A. S. Raman tweezers sorting of single microbial cells. Environ. Microbiol. Rep 1, 44–49 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Lee, K. S. et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035–1048 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Lee, K. S., Wagner, M. & Stocker, R. Raman-based sorting of microbial cells to link functions to their genes. Microb. Cell 7, 62–65 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Premvardhan, L., Bordes, L., Beer, A., Büchel, C. & Robert, B. Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c2 proteins from resonance Raman spectroscopy. J. Phys. Chem. B 113, 12565–12574 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Takano, H. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Biosci. Biotechnol. Biochem. 80, 1264–1273 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Wagstaff, K., Cardie, C., Rogers, S. & Schrödl, S. Constrained k-means clustering with background knowledge. in Proc. 18th International Conference on Machine Learning (eds Brodley, C. E. & Danyluk, A. P.) 577–584 (Morgan Kaufmann, 2001).

  • 29.

    Kanungo, T. et al. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Patt. Anal. Mach. Intell. 24, 881–892 (2002).

    Article  Google Scholar 

  • 30.

    Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. Fluorescence activated cell sorting. Rev. Sci. Instrum. 43, 404–409 (1972).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Ha, B. H., Lee, K. S., Jung, J. H. & Sung, H. J. Three-dimensional hydrodynamic flow and particle focusing using four vortices Dean flow. Microfluid. Nanofluid. 17, 647–655 (2014).

    CAS  Article  Google Scholar 

  • 33.

    Chu, H., Doh, I. & Cho, Y.-H. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. Lab Chip 9, 686–691 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Gao, C. et al. Single-cell bacterial transcription measurements reveal the importance of dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nat. Commun. 11, 1942 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Kitzinger, K. et al. Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. Nat. Commun. 11, 767 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Majed, N., Chernenko, T., Diem, M. & Gu, A. Z. Identification of functionally relevant populations in enhanced biological phosphorus removal processes based on intracellular polymers profiles and insights into the metabolic diversity and heterogeneity. Environ. Sci. Technol. 46, 5010–5017 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Fernando, E. Y. et al. Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME J 13, 1933–1946 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Hatzenpichler, R. et al. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal–bacterial consortia. Proc. Natl Acad. Sci. USA 113, E4069–E4078 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Schiessl, K. T. et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10, 762 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Dong, T. G., Ho, B. T., Yoder-Himes, D. R. & Mekalanos, J. J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 2623–2628 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Dolinšek, J., Lagkouvardos, I., Wanek, W., Wagner, M. & Daims, H. Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp. Appl. Environ. Microbiol. 79, 2027–2037 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Pätzold, R. et al. In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy. J. Microbiol. Methods 72, 241–248 (2008).

    PubMed  Article  CAS  Google Scholar 

  • 45.

    Wei, L. & Min, W. Electronic preresonance stimulated Raman scattering microscopy. J. Phys. Chem. Lett. 9, 4294–4301 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Gruber-Vodicka, H. R. et al. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. Proc. Natl Acad. Sci. USA. 108, 12078–12083 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Lenz, R., Enders, K., Stedmon, C. A., MacKenzie, D. M. A. & Nielsen, T. G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 100, 82–91 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Gillibert, R. et al. Raman tweezers for small microplastics and nanoplastics identification in seawater. Environ. Sci. Technol. 53, 9003–9013 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Zhang, P. et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal. Chem. 87, 2282–2289 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    McIlvenna, D. et al. Continuous cell sorting in a flow based on single cell resonance Raman spectra. Lab Chip 16, 1420–1429 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Folick, A., Min, W. & Wang, M. C. Label-free imaging of lipid dynamics using coherent anti-stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy. Curr. Opin. Genet. Dev. 21, 585–590 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Hiramatsu, K. et al. High-throughput label-free molecular fingerprinting flow cytometry. Sci. Adv. 5, eaau0241 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 54.

    Suzuki, Y. et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc. Natl Acad. Sci. USA 116, 15842–15848 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Nitta, N. et al. Raman image-activated cell sorting. Nat. Commun. 11, 3452 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Eek, K. M., Sessions, A. L. & Lies, D. P. Carbon-isotopic analysis of microbial cells sorted by flow cytometry. Geobiology 5, 85–95 (2007).

    CAS  Article  Google Scholar 

  • 57.

    Dyksma, S. et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J 10, 1939–1953 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Ling, L., Zhou, F., Huang, L. & Li, Z.-Y. Optical forces on arbitrary shaped particles in optical tweezers. J. Appl. Phys. 108, 073110 (2010).

    Article  CAS  Google Scholar 

  • 59.

    Bonessi, D., Bonin, K. & Walker, T. Optical forces on particles of arbitrary shape and size. J. Opt. A Pure Appl. Opt. 9, S228–S234 (2007).

    Article  Google Scholar 

  • 60.

    Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).

    CAS  Article  Google Scholar 

  • 62.

    Dholakia, K. & Reece, P. Optical micromanipulation takes hold. Nano Today 1, 18–27 (2006).

    Article  Google Scholar 

  • 63.

    Kim, S., Kang, I., Seo, J.-H. & Cho, J.-C. Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a biochemical ‘helper’ catalase. ISME J 13, 2252–2263 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Li, T. et al. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10, 580–588 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Huang, W. E., Griffiths, R. I., Thompson, I. P., Bailey, M. J. & Whiteley, A. S. Raman microscopic analysis of single microbial cells. Anal. Chem. 76, 4452–4458 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Schuster, K. C., Reese, I., Urlaub, E., Gapes, J. R. & Lendl, B. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal. Chem. 72, 5529–5534 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Dochow, S. et al. Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps. Anal. Bioanal. Chem. 405, 2743–2746 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Kodinariya, T. M. & Makwana, P. R. Review on determining number of Cluster in K-Means Clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 1, 90–95 (2013).

    Google Scholar 

  • 70.

    Bjerg, J. T. et al. Long-distance electron transport in individual, living cable bacteria. Proc. Natl Acad. Sci. USA. 115, 5786–5791 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Zhao, J., Lui, H., McLean, D. I. & Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61, 1225–1232 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 72.

    Beier, B. D. & Berger, A. J. Method for automated background subtraction from Raman spectra containing known contaminants. Analyst 134, 1198–1202 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    Hehemann, J.-H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 75.

    Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Wang, Y. et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal. Chem. 88, 9443–9450 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 77.

    Yuan, X. et al. Effect of laser irradiation on cell function and its implications in Raman spectroscopy. Appl. Environ. Microbiol. 84, e02508–e02517 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    A core microbiota dominates a rich microbial diversity in the bovine udder and may indicate presence of dysbiosis

    Case studies show climate variation linked to rise and fall of medieval nomadic empires