in

Fresh water skin disease in dolphins: a case definition based on pathology and environmental factors in Australia

  • 1.

    Geraci, J. R., Hicks, B. D. & St. Aubin, D. J. Dolphin pox: a skin disease of cetaceans. Can. J. Comp. Med. 43, 399–404 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Wilson, B. et al. Epidermal diseases in bottlenose dolphins: impacts of natural and anthropogenic factors. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 1077–1083 (1999).

    CAS  Article  Google Scholar 

  • 3.

    Fair, P. A. & Becker, P. R. Review of stress in marine mammals. J. Aquat. Ecosyst. Stress Recov. 7, 335–354 (2000).

    CAS  Article  Google Scholar 

  • 4.

    Ortiz, R. M. Osmoregulation in marine mammals. J. Exp. Biol. 204, 1831–1844 (2001).

    CAS  PubMed  Google Scholar 

  • 5.

    Bossart, G. D. et al. Pathologic findings in stranded Atlantic bottlenose dolphins (Tursiops truncatus) from the Indian River Lagoon, Florida. Florida Sci. 66, 226–238 (2003).

    Google Scholar 

  • 6.

    Hart, L. B. et al. Skin lesions on common bottlenose dolphins (Tursiops truncatus) from three sites in the Northwest Atlantic, USA. PLoS ONE 7, e33081. https://doi.org/10.1371/journal.pone.0033081 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Reif, J. S. et al. Lobomycosis in Atlantic bottlenose dolphins from the Indian River lagoon, Florida. JAVMA 228, 104–108 (2006).

    PubMed  Article  Google Scholar 

  • 8.

    Reif, J. S. et al. Evaluation and comparison of the health status of Atlantic bottlenose dolphins from the Indian River Lagoon, Florida, and Charleston, South Carolina. JAVMA 233, 299–307 (2008).

    PubMed  Article  Google Scholar 

  • 9.

    Gulland, F. M. D. et al. Health assessment, antibiotic treatment, and behavioral responses to herding efforts of a cow-calf pair of humpback whales (Megaptera novaeangliae) in the Sacramento River Delta, California. Aquat. Mamm. 34, 182–192 (2008).

    Article  Google Scholar 

  • 10.

    Van Bressem, M. F., de Oliveira Santos, M. C. & de Faria Oshima, J. E. Skin diseases in Guiana dolphins (Sotalia guianensis) from the Paranaguá estuary, Brazil: a possible indicator of a compromised marine environment. Mar. Env. Res. 67, 63–68 (2009).

    Article  CAS  Google Scholar 

  • 11.

    Van Bressem, M. F. et al. Epidemiological pattern of tattoo skin disease: a potential general health indicator for cetaceans. Dis. Aquat. Org. 85, 225–237 (2009).

    Article  Google Scholar 

  • 12.

    Rowe, L. E., Currey, R. J., Dawson, S. M. & Johnson, D. Assessment of epidermal condition and calf size of Fiordland bottlenose dolphin Tursiops truncatus populations using dorsal fin photographs and photogrammetry. Endanger. Species Res. 11, 83–89 (2010).

    Article  Google Scholar 

  • 13.

    Mullin, K., et al. Common bottlenose dolphins (Tursiops truncatus) in Lake Pontchartrain, Louisiana, 2007 to mid-2014. NOAA Technical Memorandum, NMFS-SEFSC-673. 43 pp. https://doi.org/10.7289/V51C1TT8 (2015).

  • 14.

    Fazioli, K. & Mintzer, V. Short-term effects of hurricane Harvey on Bottlenose Dolphins (Tursiops truncatus) in Upper Galveston Bay, TX. Estuaries and Coasts 43, 1013–1031. https://doi.org/10.1007/s12237-020-00751-y (2020).

    Article  Google Scholar 

  • 15.

    Charlton, K., Taylor, A. & McKechnie, S. A note on divergent mtDNA lineages of bottlenose dolphins from coastal waters of southern Australia. J. Cetacean Res. Manag. 8, 173–739 (2006).

    Google Scholar 

  • 16.

    Bilgmann, K., Moller, L. M., Harcourt, R. G., Gibbs, S. E. & Beheregaray, L. B. Genetic differentiation in bottlenose dolphins from South Australia: association with local oceanography and coastal geography. MEPS 341, 265–276 (2007).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Möller, L. M., Bilgmann, K., Charlton-Robb, K. & Beheregaray, L. Multi-gene evidence for a new bottlenose dolphin species in southern Australia. Mol. Phylogent. Evol. 49, 674–681 (2008).

    Article  CAS  Google Scholar 

  • 18.

    Charlton-Robb, K. et al. New dolphin species, the Burrunan dolphin Tursiops australis sp. nov., endemic to southern Australian coastal waters. PLoS ONE 6, 24047. https://doi.org/10.1371/journal.pone.0024047 (2011).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Charlton-Robb, K., Taylor, A. C. & McKechnie, S. W. Population genetic structure of the Burrunan dolphin (Tursiops australis) in coastal waters of south-eastern Australia: conservation implications. Cons. Genet. 16(1), 195–207. https://doi.org/10.1007/s10592-014-0652-6 (2015).

    Article  Google Scholar 

  • 20.

    Pratt, E. A. et al. Hierarchical metapopulation structure in a highly mobile marine predator: the southern Australian coastal bottlenose dolphin (Tursiops cf. australis). Cons. Genet. 19(3), 637–54. https://doi.org/10.1007/s10592-017-1043-6 (2018).

    Article  Google Scholar 

  • 21.

    Passadore, C., Parra, G. J. & Moller, L. Unravelling the secrets of a new dolphin species: population size and spatial ecology of the Burrunan dolphin (Tursiops australis) in Coffin Bay, South Australia. S. Aust. Nat. 89, 46–54 (2015).

    Google Scholar 

  • 22.

    Committee on Taxonomy. List of marine mammal species and subspecies. Society for Marine Mammalogy (2020). www.marinemammalscience.org, consulted on 9/24/20.

  • 23.

    Jedensjö, M., Kemper, C. M., Milella, M., Willems, E. P. & Krützen, M. Taxonomy and distribution of bottlenose dolphins in Australian waters: an osteological clarification. Can. J. Zool. 98(7), 461–479 (2020).

    Article  Google Scholar 

  • 24.

    Oremus, M., Garrigue, C., Tezanos-Pinto, G. & Baker, S. C. Phylogenetic identification and population differentiation of bottlenose dolphins (Tursiops spp.) in Melanesia, as revealed by mitochondrial DNA. Mar. Mamm. Sci. 31, 1035–56 (2015).

    Article  Google Scholar 

  • 25.

    Gray, H. W. et al. Cryptic lineage differentiation among Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the northwest Indian Ocean. Mol. Phylogenet. Evol. 122, 1–14 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Chehida, Y. B. et al. Mitochondrial genomics reveals the evolutionary history of the porpoises (Phocoenidae) across the speciation continuum. Sci. Rep. 10, 15190. https://doi.org/10.1038/s41598-020-71603-9 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Horreo, J. L. New insights into the phylogenetic relationships among the oceanic dolphins (Cetacea: Delphinidae). J. Zool. Syst. Evol. 57, 476–480. https://doi.org/10.1111/jzs.12255 (2019).

    Article  Google Scholar 

  • 28.

    Lee, K. et al. First report of the complete mitochondrial genome and phylogenetic analysis of Fraser’s dolphin Lagenodelphis hosei (Cetacea: Delphinidae). Cons. Genet. Res. 11, 47–50 (2019).

    Article  Google Scholar 

  • 29.

    Moura, A. E. et al. Recent diversification of a marine genus (Tursiops spp.) tracks habitat preference and environmental change. Syst. Biol. 62, 865–877. https://doi.org/10.1093/sysbio/syt051 (2013).

    Article  PubMed  Google Scholar 

  • 30.

    Zurano, J. P. et al. Cetartiodactyla: updating a time-calibrated molecular phylogeny. Mol. Phylogenet. Evol. 133, 256–262 (2019).

    PubMed  Article  Google Scholar 

  • 31.

    Meager, J. J. & Limpus, C. Mortality of inshore marine mammals in eastern Australia is predicted by freshwater discharge and air temperature. PLoS ONE 9, e94849. https://doi.org/10.1371/journal.pone.0094849 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn. 15, 319–324 (1999).

    ADS  Article  Google Scholar 

  • 33.

    Pepler, A., Timbal, B., Rakich, C. & Coutts-Smith, A. Indian Ocean dipole overrides ENSO’s influence on cool season rainfall across the eastern seaboard of Australia. J. Climate 27, 3816–3826 (2014).

    ADS  Article  Google Scholar 

  • 34.

    Hobday, A. & Pecl, G. T. Identification of global marine hotspots: sentinels for change and vanguards for adaptation. Rev. Fish Biol. Fish. 24, 415–425. https://doi.org/10.1007/s11160-013-9326-6 (2014).

    Article  Google Scholar 

  • 35.

    Summary for Policymakers in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (ed. Pörtner, H.O. et al.) https://www.ipcc.ch/ (2019).

  • 36.

    Hobday, A. J. & Lough, J. M. Projected climate change in Australian marine and freshwater environments. Mar. Freshw. Res. 62, 1000–1014 (2011).

    Article  Google Scholar 

  • 37.

    Wheeler, P., Peterson, J. & Gordon-Brown, L. Flood-tide delta morphological change at the Gippsland Lakes artificial entrance, Australia (1889–2009). Aust. Geogr. 41, 183–216. https://doi.org/10.1080/00049181003742302 (2010).

    Article  Google Scholar 

  • 38.

    Geraci, J. R. & Lounsbury, V. J. Marine Mammals Ashore; A guide for Strandings 2nd edn, 2005 (National Aquarium in Baltimore, Baltimore, 2005).

    Google Scholar 

  • 39.

    Duignan, P.J. Marine mammal necropsy techniques and tissue sampling in Marine Wildlife. Post Graduate Foundation in Veterinary Science, University of Sydney. Proceedings, 335, 387–428 (2000).

  • 40.

    Carson, F. L. Histotechnology, A Self-Instructional Text 2nd edn, 93–102 (American Society of Clinical Pathologists, Chicago, 1997).

    Google Scholar 

  • 41.

    Finn, H. Conservation biology of Bottlenose Dolphins (Tursiops sp.) in Perth metropolitan waters. Ph.D. thesis. School of Biological Sciences and Biotechnology, Murdoch University, Perth, Western Australia. http://adt.caul.edu.au/ (2005).

  • 42.

    Chabanne, D., Finn, H., Salgado-Kent, C. & Bedjer, L. Identification of a resident community of bottlenose dolphins (Tursiops aduncus) in the Swan Canning Riverpark, Western Australia, using behavioural information. Pac. Cons. Biol. 18, 247–262 (2012).

    Article  Google Scholar 

  • 43.

    Stephens, N. et al. Cetacean morbillivirus in coastal Indo-Pacific bottlenose dolphins, Western Australia. EID 20, 666–670 (2014).

    Google Scholar 

  • 44.

    Bracht, A. J. et al. Genetic identification of novel poxviruses of cetaceans and pinnipeds. Arch. Virol. 151, 423–438 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Van Devanter, D. R. et al. Detection and analysis of diverse herpesviral species by consensus primer PCR. J. Clin. Microbiol. 34, 1666–1671 (1996).

    Article  Google Scholar 

  • 46.

    Environment Report, Gippsland Lakes Intensive Water Quality Monitoring Program 2006–07. Environment Protection Agency, Victoria, Australia. Publication 1241, 58 pp. (2008).

  • 47.

    Cook, P., Holland, D. & Longmore, A. Effect of a flood event on the dynamics of phytoplankton and biochemistry in a large temperate Australian lagoon. Limnol. Oceanogr. 55, 1123–1133 (2008).

    ADS  Article  CAS  Google Scholar 

  • 48.

    Holyoake, C., et al. Technical Report on the bottlenose dolphin (Tursiops aduncus) Unusual Mortality Event within the Swan Canning Riverpark, June-October 2009. Technical Report to the Swan River Trust, 234 pp (2010).

  • 49.

    Zhu, K. et al. The loss of taste genes in cetaceans. BMC Evol. Biol. 14, 218. https://doi.org/10.1186/s12862-014-0218-8 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Hornsby, F. E. et al. Using salinity to identify common bottlenose dolphin habitat in Barataria Bay, Louisiana, USA. Endanger. Species Res. 33, 181–192 (2017).

    Article  Google Scholar 

  • 51.

    Colbert, A.A., et al. Investigation of unusual mortalities of bottlenose dolphins along the mid-Texas coastal bay ecosystem during 1992. NOAA Technical Report NMFS 147, 23 pp (1999).

  • 52.

    Simpson, J. G. & Gardner, M. B. Comparative microscopic anatomy of selected marine mammals. In Mammals of the Sea: Biology and Medicine (ed. Ridgway, S. H.) 298–418 (Charles C. Thomas Publishers, Springfield, 1972).

    Google Scholar 

  • 53.

    Greenwood, A. G., Harrison, R. J. & Whitting, H. W. Functional and pathological aspects of the skin of marine mammals. In Functional Anatomy of Marine Mammals (ed. Harrison, R. J.) 71–110 (Academic Press, London, 1974).

    Google Scholar 

  • 54.

    Harrison, R. J. & Thurley, K. W. Structure of the epidermis. In Tursiops, Delphinus and Phocoena in Functional Anatomy of Marine Mammals (ed. Harrison, R. J.) 45–71 (Academic Press, London, 1974).

    Google Scholar 

  • 55.

    McClain, A. M. et al. Physiological effects of low salinity exposure on bottlenose dolphins (Tursiops truncatus). J. Zool. Bot. Gard. 1, 61–75. https://doi.org/10.3390/jzbg1010005 (2020).

    Article  Google Scholar 

  • 56.

    Hui, C. Seawater consumption and water flux in the common dolphin Delphinus delphis. Phys. Zool. 54, 430–440 (1981).

    CAS  Article  Google Scholar 

  • 57.

    Andersen, S. H. & Nielsen, E. Exchange of water between the harbor porpoise, Phocoena phocoena, and the environment. Experientia 39, 52–53 (1983).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Ewing, R. Y. et al. Evaluation of serum for pathophysiological effects of prolonged low salinity water exposure in displaced bottlenose dolphins (Tursiops truncatus). Front. Vet. Sci. https://doi.org/10.3389/fvets.2017.00080 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Deming, A. C. et al. Health impacts and recovery from prolonged freshwater exposure in a common bottlenose dolphin (Tursiops truncatus). Front. Vet. Sci. 7, 235. https://doi.org/10.3389/fvets.2020.00235 (2020).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Mase-Guthrie, B., et al. Cases of prolonged freshwater exposure in dolphins along the Southeast United States. Society for Marine Mammalogy, 16th Biennial Conference, San Diego, California, pp. 182 (2005).

  • 61.

    Ridgway, S. H. Homeostasis in the aquatic environment. In Mammals of the Sea: Biology and Medicine (ed. Ridgway, S. H.) 590–747 (Charles C. Thomas Publisher, Springfield, 1972).

    Google Scholar 

  • 62.

    Suzuki, M. et al. Localization of aquaporin-2, renal morphology and urine composition in the bottlenose dolphin and the Baird’s beaked whale. J. Comp. Physiol. B 178, 149–156 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Suzuki, M. & Ortiz, R. Water balance. In Marine Mammal Physiology: Requisites for Ocean Living (eds Marshall, C. D. et al.) 139–168 (CRC Press, Boca Raton, 2016).

    Google Scholar 

  • 64.

    Gippsland Lakes Condition Report 1990–2011. Environment Protection Agency, Victoria, Australia. Publication 1530, 62 pp. (2013).

  • 65.

    Van Bressem, M. F., Van Waerebeek, K., Reyes, J. C., Dekegel, D. & Pastoret, P. P. Evidence of poxvirus in dusky dolphin (Lagenorhynchus obscurus) and Burmeister’s porpoise (Phocoena spinipinnis) from coastal Peru. J. Wildl. Dis. 29, 109–113 (1993).

    PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Van Bressem, M. F., Gaspar, R. & Aznar, F. J. Epidemiology of tattoo skin disease in bottlenose dolphins Tursiops truncatus from the Sado Estuary, Portugal. Dis. Aquat. Organ. 56, 171–179 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Duignan, P. J., Van Bressem, M. F. & Kennedy-Stoskopf, S. Viruses of marine mammals. In The CRC Handbook of Marine Mammal Medicine 3rd edn (eds Gulland, F. M. D. et al.) 331–366 (CRC Press, Boca Raton, 2018).

    Google Scholar 

  • 68.

    Van Bressem, M. F. V. & Waerebeek, K. V. Epidemiology of poxvirus in small cetaceans from the Eastern South Pacific. Mar. Mamm. Sci. 12, 371–382 (1996).

    Article  Google Scholar 

  • 69.

    Van Bressem, M. F., Van Waerebeek, K. & Raga, J. A. A review of virus infections of cetaceans and the potential impact of morbilliviruses, poxviruses and papillomaviruses on host population dynamics. Dis. Aquat. Organ. 38, 53–65 (1999).

    PubMed  Article  Google Scholar 

  • 70.

    Powell, S. N., Wallen, M. M., Bansal, S. & Mann, J. Epidemiological investigation of tattoo-like skin lesions among bottlenose dolphins in Shark Bay, Australia. Sci. Total Environ. 630, 774–780 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 71.

    Van Bressem, M. F., Van Waerebeek, K. & Duignan, P. J. Epidemiology of tattoo skin disease in captive common bottlenose dolphins (Tursiops truncatus): are males more vulnerable than females?. J. Appl. An. Welf. Sci. 21, 305–315 (2018).

    Article  CAS  Google Scholar 

  • 72.

    Fury, C. A. & Reif, J. S. Incidence of poxvirus-like lesions in two estuarine dolphin populations in Australia: links to flood events. Sci. Total Environ. 416, 536–540 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 73.

    Riggin, J. L. & Maldini, D. Photographic case studies of skin conditions in wild-ranging bottlenose dolphin (Tursiops truncatus) calves. JMATE 3, 5–9 (2010).

    Google Scholar 

  • 74.

    Sanino, G. P., Van Bressem, M. F., Van Waerebeek, K. & Pozo, N. Skin disorders of coastal dolphins at Añihué Reserve, Chilean Patagonia: a matter of concern. B. Mus. Nac. Hist. Nat. 63, 127–157 (2014).

    Google Scholar 

  • 75.

    Van Bressem, M. F. et al. Epidemiological characteristics of skin disorders in cetaceans from South American waters. LAJAM 10, 20–32 (2015).

    Article  Google Scholar 

  • 76.

    Bonar, C. J. & Wagner, R. A. A third report of “golf ball disease” in an Amazon River dolphin (Inia geoffrensis) associated with Streptococcus iniae. J. Zoo Wildl. Med. 34(3), 296–301 (2003).

    PubMed  Article  Google Scholar 

  • 77.

    Bonar, C. J. et al. A retrospective study of pathologic findings in the Amazon and Orinoco river dolphin (Inia geoffrensis) in captivity. J. Zoo Wildl. Med. 38(2), 177–191 (2007).

    PubMed  Article  Google Scholar 

  • 78.

    Martin, A. R. & Da Silva, V. M. F. Sexual dimorphism and body scarring in the boto (Amazon river dolphin) Inia geoffrensis. Mar. Mamm. Sci. 22(1), 25–33 (2006).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Transboundary cooperation a potential route to sustainable development in the Indus basin

    MIT oceanographers have an explanation for the Arctic’s puzzling ocean turbulence