in

Multiple forms of hotspots of tetrapod biodiversity and the challenges of open-access data scarcity

  • 1.

    Gaston, K. J. & Blackburn, T. Pattern and Process in Macroecology (Blackwell Science, London, 2000).

    Google Scholar 

  • 2.

    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227. https://doi.org/10.1038/35012228 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 (2006).

    Article  Google Scholar 

  • 4.

    Lovejoy, T. E. & Hannah, L. E. E. Biodiversity and Climate Change: Transforming the Biosphere (Yale University Press, New Haven, 2019).

    Google Scholar 

  • 5.

    Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96. https://doi.org/10.1038/nature05237 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 6.

    Rodrigues, A. S. L. et al. Spatially explicit trends in the global conservation status of vertebrates. PLoS ONE 9, e113934. https://doi.org/10.1371/journal.pone.0113934 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168. https://doi.org/10.1126/science.1187512 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 8.

    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 10.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67. https://doi.org/10.1038/nature11148 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 11.

    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. & Worm, B. How many species are there on earth and in the ocean?. PLoS Biol. 9, e1001127. https://doi.org/10.1371/journal.pbio.1001127 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61. https://doi.org/10.1126/science.1127609 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 13.

    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253. https://doi.org/10.1038/35012251 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. https://doi.org/10.1038/35002501 (2000).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Reid, W. V. Biodiversity hotspots. Trends Ecol. Evol. 13, 275–280. https://doi.org/10.1016/S0169-5347(98)01363-9 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Myers, N. Biodiversity hotspots revisited. Bioscience 53, 916–917. https://doi.org/10.1641/0006-3568(2003)053[0916:BHR]2.0.CO;2 (2003).

    Article  Google Scholar 

  • 17.

    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots (eds F. Zachos & J. Habel) 3–22 (Springer, Berlin, 2011).

  • 18.

    Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385. https://doi.org/10.1016/j.biocon.2012.07.015 (2013).

    Article  Google Scholar 

  • 19.

    Marchese, C. Biodiversity hotspots: a shortcut for a more complicated concept. Glob. Ecol. Conserv. 3, 297–309. https://doi.org/10.1016/j.gecco.2014.12.008 (2015).

    Article  Google Scholar 

  • 20.

    Crossman, N. D., Bryan, B. A. & Summers, D. M. Identifying priority areas for reducing species vulnerability to climate change. Divers. Distrib. 18, 60–72. https://doi.org/10.1111/j.1472-4642.2011.00851.x (2012).

    Article  Google Scholar 

  • 21.

    Fagundes, C. K., Vogt, R. C., de Souza, R. A. & De Marco Jr, P. Vulnerability of turtles to deforestation in the Brazilian Amazon: indicating priority areas for conservation. Biol. Conserv. 226, 300–310. https://doi.org/10.1016/j.biocon.2018.08.009 (2018).

    Article  Google Scholar 

  • 22.

    Trombulak, S. C. in Landscape-scale Conservation Planning (eds Stephen C. Trombulak & Robert F. Baldwin) 303–324 (Springer Netherlands, 2010).

  • 23.

    Reddy, C. S., Faseela, V. S., Unnikrishnan, A. & Jha, C. S. Earth observation data for assessing biodiversity conservation priorities in South Asia. Biodivers. Conserv. 28, 2197–2219. https://doi.org/10.1007/s10531-018-1681-0 (2019).

    Article  Google Scholar 

  • 24.

    Schmitt, C. B. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Frank E. Zachos & Jan Christian Habel) 23–42 (Springer Berlin Heidelberg, 2011).

  • 25.

    Asaad, I., Lundquist, C. J., Erdmann, M. V. & Costello, M. J. Ecological criteria to identify areas for biodiversity conservation. Biol. Conserv. 213, 309–316. https://doi.org/10.1016/j.biocon.2016.10.007 (2017).

    Article  Google Scholar 

  • 26.

    McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156. https://doi.org/10.1371/journal.pone.0169156 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23. https://doi.org/10.1111/j.1366-9516.2005.00143.x (2005).

    Article  Google Scholar 

  • 28.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400 (2015).

    Article  Google Scholar 

  • 29.

    Ondei, S., Brook, B. W. & Buettel, J. C. Nature’s untold stories: an overview on the availability and type of on-line data on long-term biodiversity monitoring. Biodivers. Conserv. 27, 2971–2987. https://doi.org/10.1007/s10531-018-1582-2 (2018).

    Article  Google Scholar 

  • 30.

    Schmeller, D. S. et al. Building capacity in biodiversity monitoring at the global scale. Biodivers. Conserv. 26, 2765–2790. https://doi.org/10.1007/s10531-017-1388-7 (2017).

    Article  Google Scholar 

  • 31.

    Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. B Biol. Sci. 280, 20122649. https://doi.org/10.1098/rspb.2012.2649 (2013).

    Article  Google Scholar 

  • 32.

    Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682. https://doi.org/10.1038/s41559-017-0332-2 (2017).

    Article  PubMed  Google Scholar 

  • 33.

    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509. https://doi.org/10.1126/science.1194442 (2010).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Meiri, S. et al. Extinct, obscure or imaginary: the lizard species with the smallest ranges. Divers. Distrib. 24, 262–273. https://doi.org/10.1111/ddi.12678 (2018).

    Article  Google Scholar 

  • 35.

    Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 4, 4701–4735. https://doi.org/10.1002/ece3.1303 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Gaston, K. J. Biodiversity-congruence. Prog. Phys. Geogr. 20, 105–112 (1996).

    Article  Google Scholar 

  • 37.

    Orme, C. D. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019. https://doi.org/10.1038/nature03850 (2005).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 38.

    Stark, G., Pincheira-Donoso, D. & Meiri, S. No evidence for the ‘rate-of-living’ theory across the tetrapod tree of life. Glob. Ecol. Biogeogr. 29, 857–884. https://doi.org/10.1111/geb.13069 (2020).

    Article  Google Scholar 

  • 39.

    Fletcher, R. & Fortin, M. Spatial Ecology and Conservation Modeling (Springer, Berlin, 2018).

    Google Scholar 

  • 40.

    Zhao, L., Li, J., Liu, H. & Qin, H. Distribution, congruence and hotspots of higher plants in China. Sci. Rep. 6, 19080. https://doi.org/10.1038/srep19080 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Soberón, J. & Peterson, T. Biodiversity informatics: managing and applying primary biodiversity data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 689–698. https://doi.org/10.1098/rstb.2003.1439 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Neves, I. Q., da LuzMathias, M. & Bastos-Silveira, C. Mapping knowledge gaps of Mozambique’s terrestrial mammals. Sci. Rep. 9, 1–14. https://doi.org/10.1038/s41598-019-54590-4 (2019).

    CAS  Article  Google Scholar 

  • 43.

    Soriano, A. in Ecosystems of the world 8A. Natural grasslands. Introduction and Western Hemisphere (ed R Coupland) 367–407 (Elsevier: Amsterdam, 1991).

  • 44.

    Andrade, B. O. et al. Vascular plant species richness and distribution in the Río de la Plata grasslands. Bot. J. Linn. Soc. 188, 6. https://doi.org/10.1093/botlinnean/boy063 (2018).

    Article  Google Scholar 

  • 45.

    Grela, I. Geografía florística de las especies arbóreas de Uruguay: propuesta para la delimitación de dendrofloras, Universidad de la República. Facultad de Ciencias – PEDECIBA, (2004).

  • 46.

    Arballo, E. & Cravino, J. Aves del Uruguay, Manual Ornitológico. Editorial Hemisferio Sur, Montevideo 1 (1999).

  • 47.

    González, E. M. & Martínez-Lanfranco, J. A. in Mamíferos de Uruguay. Guía de campo e introducción a su estudio y conservación 321–327 (Banda Oriental, MNHN y Vida Silvestre Uruguay, 2010).

  • 48.

    Pincheira-Donoso, D. The untold story on the ecological and phylogenetic complexity of the Uruguayan reptile fauna. Zootaxa 2354, 67–68. https://doi.org/10.11646/zootaxa.2354.1.6 (2010).

    Article  Google Scholar 

  • 49.

    Núñez, D., Maneyro, R., Langone, J. & de Sa, R. O. Distribución geográfica de la fauna de anfibios del Uruguay. Smithsonian Herpetol. Inf. Serv. https://doi.org/10.5479/si.23317515.134.1 (2004).

    Article  Google Scholar 

  • 50.

    Grattarola, F. & Rodríguez-Tricot, L. Mammals of Paso Centurión, an area with relicts of Atlantic Forest in Uruguay. Neotrop. Biol. Conserv. 15, 267–283. https://doi.org/10.3897/neotropical.15.e53062 (2020).

    Article  Google Scholar 

  • 51.

    SISNAP. SNAP Information System. http://www.snap.gub.uy/sisnap (2020).

  • 52.

    Soutullo, A. & Gudynas, E. How effective is the MERCOSUR’s network of protected areas in representing South America’s ecoregions?. Oryx 40, 112–116. https://doi.org/10.1017/S0030605306000020 (2006).

    Article  Google Scholar 

  • 53.

    Baldi, G. et al. Nature representation in South American protected areas: country contrasts and conservation priorities. PeerJ 7, e7155. https://doi.org/10.7717/peerj.7155 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Brazeiro, A. Eco-regiones de Uruguay: biodiversidad, presiones y conservación : aportes a la Estrategia Nacional de Biodiversidad. (Facultad de Ciencias, UDELAR, 2015).

  • 55.

    Canavero, A. et al. Amphibian diversity of Uruguay: Background knowledge, inventory completeness and sampling coverage. Boletín de la Sociedad Zoológica de Uruguay 19, 2–19 (2010).

    Google Scholar 

  • 56.

    Carreira, S. et al. Diversity of reptiles of Uruguay: knowledge and information gaps. Boletín de la Sociedad Zoológica de Uruguay 21, 9–29 (2012).

    Google Scholar 

  • 57.

    Soutullo, A., Clavijo, C. & Martínez-Lanfranco, J. Especies prioritarias para la conservación en Uruguay. Vertebrados, moluscos continentales y plantas vasculares. (SNAP/DINAMA/MVOTMA and DICYT/MEC, 2013).

  • 58.

    Grattarola, F. et al. Biodiversidata: An open-access biodiversity database for Uruguay. Biodivers. Data J. https://doi.org/10.3897/BDJ.7.e36226 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Grattarola, F. et al. Biodiversidata: A novel dataset for the vascular plant species diversity in Uruguay. Biodivers. Data J. https://doi.org/10.3897/BDJ.8.e56850 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. 82, 607–645. https://doi.org/10.1111/j.1469-185X.2007.00028.x (2007).

    Article  PubMed  Google Scholar 

  • 61.

    Luck, G. W. & Smallbone, L. T. in Urban Ecology Ecological Reviews (ed Kevin J. Gaston) 88–119 (Cambridge University Press, Cambridge, 2010).

  • 62.

    Pardo, I. et al. Spatial congruence between taxonomic, phylogenetic and functional hotspots: true pattern or methodological artefact?. Divers. Distrib. 23, 209–220. https://doi.org/10.1111/ddi.12511 (2017).

    Article  Google Scholar 

  • 63.

    Peterson, A. T., Asase, A., Canhos, D. A. L., de Souza, S. & Wieczorek, J. Data leakage and loss in biodiversity informatics. Biodivers. Data J. https://doi.org/10.3897/BDJ.6.e26826 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Lamoreux, J. F. et al. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212–214. https://doi.org/10.1038/nature04291 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 65.

    Feng, J.-M., Zhang, Z. & Nan, R.-Y. Non-congruence among hotspots based on three common diversity measures in Yunnan, south-west China. Plant Ecol. Divers. 4, 353–361. https://doi.org/10.1080/17550874.2012.697204 (2011).

    Article  Google Scholar 

  • 66.

    Westgate, M. J., Barton, P. S., Lane, P. W. & Lindenmayer, D. B. Global meta-analysis reveals low consistency of biodiversity congruence relationships. Nat. Commun. 5, 3899. https://doi.org/10.1038/ncomms4899 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 67.

    Xu, H. et al. Biodiversity congruence and conservation strategies: a national test. Bioscience 58, 632–639. https://doi.org/10.1641/b580710 (2008).

    Article  Google Scholar 

  • 68.

    Brazeiro, A. et al. Prioridades Geográficas para la Conservación de la Biodiversidad Terrestre (Resumen Ejecutivo) (Facultad de Ciencias, Universidad de la República, Montevideo, Montevideo, 2008).

    Google Scholar 

  • 69.

    Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232–1244. https://doi.org/10.1111/ddi.12489 (2016).

    Article  Google Scholar 

  • 70.

    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. 104, 13384–13389. https://doi.org/10.1073/pnas.0704469104 (2007).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 71.

    Boakes, E. H., Fuller, R. A., McGowan, P. J. K. & Mace, G. M. Uncertainty in identifying local extinctions: the distribution of missing data and its effects on biodiversity measures. Biol. Lett. https://doi.org/10.1098/rsbl.2015.0824 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    Stropp, J. et al. Mapping ignorance: 300 years of collecting flowering plants in Africa. Glob. Ecol. Biogeogr. 25, 1085–1096. https://doi.org/10.1111/geb.12468 (2016).

    Article  Google Scholar 

  • 73.

    Di Minin, E. & Toivonen, T. Global protected area expansion: creating more than paper parks. Bioscience 65, 637–638. https://doi.org/10.1093/biosci/biv064 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 74.

    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435. https://doi.org/10.1111/ele.12189 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 75.

    Ahrends, A. et al. Funding begets biodiversity. Divers. Distrib. 17, 191–200. https://doi.org/10.1111/j.1472-4642.2010.00737.x (2011).

    Article  Google Scholar 

  • 76.

    Hochkirch, A. et al. A strategy for the next decade to address data deficiency in neglected biodiversity. Conserv. Biol. https://doi.org/10.1111/cobi.13589 (2020).

    Article  PubMed  Google Scholar 

  • 77.

    Cabrera, M. R. & Carreira, S. A new, but probably extinct, species of Cnemidophorus (Squamata, Teiidae) from Uruguay. Herpetol. J. 19, 97–105 (2009).

    Google Scholar 

  • 78.

    Verrastro, L., Maneyro, R., Da Silva, C. M. & Farias, I. A new species of lizard of the L. wiegmannii group (Iguania: Liolaemidae) from the Uruguayan Savanna. Zootaxa 4294, 443–461. https://doi.org/10.11646/zootaxa.4294.4.4 (2017).

    Article  Google Scholar 

  • 79.

    Maneyro, R., Arrieta, D. & de Sá, R. O. A new toad (Anura: Bufonidae) from Uruguay. J. Herpetol. 38, 161–165. https://doi.org/10.1670/54-03A (2004).

    Article  Google Scholar 

  • 80.

    Maneyro, R., Naya, D. E. & Baldo, D. A new species of Melanophryniscus (Anura, Bufonidae) from Uruguay. Iheringia. Série Zoologia 98, 189–192. https://doi.org/10.1590/S0073-47212008000200003 (2008).

    Article  Google Scholar 

  • 81.

    Rosset, S. D. New Species of Odontophrynus Reinhardt and Lütken 1862 (Anura: Neobatrachia) from Brazil and Uruguay. J. Herpetol. 42, 134–144. https://doi.org/10.1670/07-088R1.1 (2008).

    Article  Google Scholar 

  • 82.

    Grattarola, F. et al. Primer registro de yaguarundí (Puma yagouaroundi) (Mammalia: Carnivora: Felidae) en Uruguay, con comentarios sobre monitoreo participativo. Boletín de la Sociedad Zoológica del Uruguay 25, 85–91 (2016).

    Google Scholar 

  • 83.

    Prigioni, C. M., Villalba, J. S., Sappa, A. & González, J. C. Confirmación de la presencia del mono aullador negro (Alouatta caraya) (Mammalia, Primates, Atelidae) en el Uruguay. Acta Zoológica Platense 1 (2018).

  • 84.

    Canavero, A., Naya, D. & Maneyro, R. Leptodactylus furnarius Sazima & Bokermann, 1978 (Anura: leptodactylidae). Cuadernos de Herpetología 15, 89 (2001).

    Google Scholar 

  • 85.

    Kwet, A. et al. First record of Hyla albopunctata Spix, 1824 (Anura: Hylidae) in Uruguay, with comments on the advertisement call. Boletín de la Asociación Herpetológica Española 13, 15–19 (2002).

    Google Scholar 

  • 86.

    Maneyro, R. & Beheregaray, M. First record of Physalaemus cuvieri Fitzinger, 1826 (Anura, Leiuperidae) in Uruguay, with comments on the anuran fauna along the borderline Uruguay-Brazil. Boletín de la Sociedad Zoológica del Uruguay 16, 36–41 (2007).

    Google Scholar 

  • 87.

    Azpiroz, A. B. & Menéndez, J. L. Three new species and novel distributional data for birds in Uruguay. Bull. Br. Ornithol. Club 128, 38–56 (2008).

    Google Scholar 

  • 88.

    Hernández, D. et al. Confirmación de la presencia del Tucán Grande Ramphastos toco (Piciformes: Ramphastidae) en Uruguay. Boletín de la Sociedad Zoológica del Uruguay 18, 35–38 (2009).

    Google Scholar 

  • 89.

    Rodríguez-Cajarville, M., Arballo, E. & Gambarotta, J. First documented records of Eastern Kingbird, Tyrannus tyrannus Linnaeus, 1758 (Aves: Tyrannidae) in Uruguay. Check List 13, 169–172. https://doi.org/10.15560/13.4.169 (2017).

    Article  Google Scholar 

  • 90.

    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221. https://doi.org/10.1038/ncomms9221 (2015).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 91.

    Sousa-Baena, M. S., Garcia, L. C. & Peterson, A. T. Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory. Divers. Distrib. 20, 369–381. https://doi.org/10.1111/ddi.12136 (2014).

    Article  Google Scholar 

  • 92.

    Faith, D. et al. Bridging the biodiversity data gaps: recommendations to meet users’ data needs. Biodivers. Inf. https://doi.org/10.17161/bi.v8i2.4126 (2013).

    Article  Google Scholar 

  • 93.

    Grattarola, F. & Pincheira-Donoso, D. Biodiversidata: a collaborative initiative towards open data availability in Uruguay. Biodivers. Inf. Sci. Stand. 3, e37715. https://doi.org/10.3897/biss.3.37715 (2019).

    Article  Google Scholar 

  • 94.

    Grattarola, F. & Pincheira-Donoso, D. Data-sharing en Uruguay, la visión de los colectores y usuarios de datos. Boletín de la Sociedad Zoológica del Uruguay 28, 1–14. https://doi.org/10.26462/28.1.1 (2019).

    Article  Google Scholar 

  • 95.

    Griffin, E. in Data Science Landscape. Studies in Big Data Vol. 38 (eds U. Munshi & N. Verma) 183–198 (Springer, 2018).

  • 96.

    Freeman, B. & Peterson, A. T. Completeness of digital accessible knowledge of the birds of western Africa: priorities for survey. Condor https://doi.org/10.1093/condor/duz035 (2019).

    Article  Google Scholar 

  • 97.

    Amano, T., Lamming, J. D. L. & Sutherland, W. J. Spatial gaps in blobal biodiversity information and the role of citizen science. Bioscience 66, 393–400. https://doi.org/10.1093/biosci/biw022 (2016).

    Article  Google Scholar 

  • 98.

    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294. https://doi.org/10.1016/j.biocon.2016.09.004 (2017).

    Article  Google Scholar 

  • 99.

    Grattarola, F. et al. Biodiversidata: An open-access biodiversity database for Uruguay. Zenodo https://doi.org/10.5281/zenodo.3685897 (2019).

  • 100.

    Grattarola, F. et al. Tetrápodos de Uruguay. Occurrence dataset. GBIF https://doi.org/10.15468/ozcrpu (2020).

    Article  Google Scholar 

  • 101.

    IUCN. The IUCN Red List of Threatened Species. http://www.iucnredlist.org (2020).

  • 102.

    Carreira, S. & Maneyro, R. Libro Rojo de los Anfibios y Reptiles del Uruguay. Biología y conservación de los Anfibios y Reptiles en peligro de extinción a nivel nacional. (DINAMA, 2019).

  • 103.

    Azpiroz, A. B., Jiménez, S. & Alfaro, M. Libro Rojo de las Aves del Uruguay. Biología y conservación de las aves en peligro de extinción a nivel nacional Categorías “Extinto a Nivel Regional”, “En Peligro Crítico” y “En Peligro”. (DINAMA & DINARA, 2017).

  • 104.

    Dale, M. R. & Fortin, M.-J. Spatial Analysis: A Guide for Ecologists (Cambridge University Press, Cambridge, 2014).

    Google Scholar 

  • 105.

    Grattarola, F. GitHub repository https://github.com/bienflorencia/Multiple-forms-of-hotspots-of-tetrapod-biodiversity (2020).

  • 106.

    Dutilleul, P., Clifford, P., Richardson, S. & Hemon, D. Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49, 305–314. https://doi.org/10.2307/2532625 (1993).

    Article  Google Scholar 

  • 107.

    Vallejos, R., Osorio, F. & Bevilacqua, M. Spatial Relationships Between Two Georeferenced Variables: with Applications in R (Springer, Berlin, 2018).

    Google Scholar 

  • 108.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).

    Article  Google Scholar 

  • 109.

    Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314. https://doi.org/10.1111/1440-1703.12102 (2020).

    Article  Google Scholar 

  • 110.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456. https://doi.org/10.1111/2041-210x.12613 (2016).

    Article  Google Scholar 

  • 111.

    Kusumoto, B. et al. Global distribution of coral diversity: biodiversity knowledge gradients related to spatial resolution. Ecol. Res. 35, 315–326. https://doi.org/10.1111/1440-1703.12096 (2020).

    Article  Google Scholar 

  • 112.

    Yang, W., Ma, K. & Kreft, H. Geographical sampling bias in a large distributional database and its effects on species richness–environment models. J. Biogeogr. 40, 1415–1426. https://doi.org/10.1111/jbi.12108 (2013).

    Article  Google Scholar 

  • 113.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101. https://doi.org/10.1038/nature09329 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 114.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).

    Article  Google Scholar 

  • 115.

    Oksanen, J. et al. Package ‘vegan’. Community ecology package, version 2 (2013).


  • Source: Ecology - nature.com

    MIT oceanographers have an explanation for the Arctic’s puzzling ocean turbulence

    Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents