in

Soil fungal and bacterial communities in southern boreal forests of the Greater Khingan Mountains and their relationship with soil properties

  • 1.

    Gattinger, A., Palojärvi, A. & Schloter, M. Soil microbial communities and related Functions. in Perspectives for agroecosystem management (eds. Schröder P., Pfadenhauer J. & Munch J. C.) 279–292 (Elsevier, 2008).

  • 2.

    Renella, G. et al. Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biol. Biochem. 36, 443–451 (2004).

    CAS  Article  Google Scholar 

  • 3.

    Ros, M., Pascual, J. A., Garcia, C., Hernandez, M. T. & Insam, H. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol. Biochem. 38, 3443–3452 (2006).

    CAS  Article  Google Scholar 

  • 4.

    Krishnan, A., Alias, S. A., Wong, C. M. V. L., Pang, K. & Convey, P. Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol. 34, 1535–1542 (2011).

    Article  Google Scholar 

  • 5.

    Bronson, K. F. et al. Carbon and nitrogen pools of southern high plains cropland and grassland soils. Soil Sci. Soc. Am. J. 68, 1695 (2004).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Liu, S. et al. Estimation of plot-level soil carbon stocks in China’s forests using intensive soil sampling. Geoderma 348, 107–114 (2019).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Kapusta, P., Sobczyk, A., Rożen, A. & Weiner, J. Species diversity and spatial distribution of enchytraeid communities in forest soils: effects of habitat characteristics and heavy metal contamination. Appl. Soil Ecol. 23, 187–198 (2003).

    Article  Google Scholar 

  • 8.

    Romanowicz, K. J. et al. Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture. FEMS Microbiol. Ecol. 92, w149 (2016).

    Article  CAS  Google Scholar 

  • 9.

    Ilstedt, U. & Singh, S. Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost. Soil Biol. Biochem. 37, 1407–1410 (2005).

    CAS  Article  Google Scholar 

  • 10.

    Liu, L., Gundersen, P., Zhang, T. & Mo, J. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 44, 31–38 (2012).

    Article  CAS  Google Scholar 

  • 11.

    Turner, B. L. & Wright, S. J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117, 115–130 (2014).

    CAS  Article  Google Scholar 

  • 12.

    Allison, S. D., Hanson, C. A. & Treseder, K. K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol. Biochem. 39, 1878–1887 (2007).

    CAS  Article  Google Scholar 

  • 13.

    Gadd, G. M. Microorganisms in soils: roles in genesis and functions. Soil Biology. 3, 325–356 (2005).

    CAS  Article  Google Scholar 

  • 14.

    Johnson, M. J., Lee, K. Y. & Scow, K. M. DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279–303 (2003).

    ADS  Article  Google Scholar 

  • 15.

    Pietri, J. A. & Brookes, P. C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 40, 1856–1861 (2008).

    Article  CAS  Google Scholar 

  • 16.

    Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J. & Averill, C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth. 2, 349–360 (2020).

    Article  Google Scholar 

  • 17.

    Schulte-Uebbing, L. & de Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis. Global Change Biol. 24, e416–e431 (2018).

    Article  Google Scholar 

  • 18.

    Juday, G. P. Taiga. (2019) Available at: https://www.britannica.com/science/taiga (Accessed: October 15, 2020.

  • 19.

    Hu, L. et al. Spatiotemporal dynamics in vegetation GPP over the Great Khingan Mountains using GLASS products from 1982 to 2015. Remote Sens. Basel. 10, 488 (2018).

    ADS  Article  Google Scholar 

  • 20.

    Jiang, H., Apps, M. J., Peng, C., Zhang, Y. & Liu, J. Modelling the influence of harvesting on Chinese boreal forest carbon dynamics. Forest Ecol. Manag. 169, 65–82 (2002).

    Article  Google Scholar 

  • 21.

    Tang, H. et al. Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, Northeastern China. Remote Sens.-Basel. 7, 11914–11932 (2015).

  • 22.

    Greene, D. F. et al. A review of the regeneration dynamics of North American boreal forest tree species. Can. J. Forest Res. 29, 824–839 (1999).

    ADS  Article  Google Scholar 

  • 23.

    Yuan, Z. Y. & Chen, H. Y. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit. Rev. Plant Sci. 29, 204–221 (2010).

    CAS  Article  Google Scholar 

  • 24.

    Sanderson, L. A., McLaughlin, J. A. & Antunes, P. M. The last great forest: a review of the status of invasive species in the North American boreal forest. Forestry 85, 329–340 (2012).

    Article  Google Scholar 

  • 25.

    Kreutzweiser, D. P., Hazlett, P. W. & Gunn, J. M. Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: a review. Environ. Rev. 16, 157–179 (2008).

    CAS  Article  Google Scholar 

  • 26.

    Dhar, A. et al. Plant community development following reclamation of oil sands mine sites in the boreal forest: a review. Environ. Rev. 26, 286–298 (2018).

    Article  Google Scholar 

  • 27.

    Simard, D. G., Fyles, J. W., Paré, D. & Nguyen, T. Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Can. J. Soil Sci. 81, 229–237 (2001).

    CAS  Article  Google Scholar 

  • 28.

    Ohtonen, R. & Väre, H. Vegetation composition determines microbial activities in a boreal forest soil. Microb. Ecol. 36, 328–335 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Nilsson, M., Wardle, D. A. & Dahlberg, A. Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 86, 16–26 (1999).

    Article  Google Scholar 

  • 30.

    Dimitriu, P. A. & Grayston, S. J. Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 59, 563–573 (2010).

    PubMed  Article  Google Scholar 

  • 31.

    Buckley, D. H. & Schmidt, T. M. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5, 441–452 (2003).

    PubMed  Article  Google Scholar 

  • 32.

    Jangid, K. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol. Biochem. 43, 2184–2193 (2011).

    CAS  Article  Google Scholar 

  • 33.

    Wal, A. V. D. et al. Fungal biomass development in a chronosequence of land abandonment. Soil Biol. Biochem. 38, 51–60 (2006).

    Article  CAS  Google Scholar 

  • 34.

    Fu, X. et al. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Sci. Total Environ. 502, 280–286 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 35.

    Kalinina, O. et al. Self-restoration of post-agrogenic chernozems of Russia: soil development, carbon stocks, and dynamics of carbon pools. Geoderma 162, 196–206 (2011).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Gao, Y. et al. Influence of forest type on dark-spored myxomycete community in subtropical forest soil, China. Soil Biol. Biochem. 138, 107606 (2019).

    CAS  Article  Google Scholar 

  • 37.

    Sheng, Y. et al. Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. MicrobiologyOpen. 8, e874 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Vatani, L., Hosseini, S. M., Sarjaz, M. R. & Alavi, S. J. Tree species effects on albedo, soil carbon and nitrogen stocks in a temperate forest in Iran. Aus. J. For. Sci. 136, 283–310 (2019).

    Google Scholar 

  • 39.

    Bauhus, J., Paré, D. & Co Té, L. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol. Biochem. . 30, 1077–1089 (1998).

  • 40.

    Dukunde, A., Schneider, D., Schmidt, M., Veldkamp, E. & Daniel, R. Tree species shape soil bacterial community structure and function in temperate deciduous forests. Front. Microbiol. 10, 1–17 (2019).

    Article  Google Scholar 

  • 41.

    Tajik, S., Ayoubi, S., Khajehali, J. & Shataee, S. Effects of tree species composition on soil properties and invertebrates in a deciduous forest. Arab. J. Geosci. 12, 368 (2019).

    Article  CAS  Google Scholar 

  • 42.

    Stingl, U. & Giovannoni, S. J. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 43.

    Danger, M., Daufresne, T., Lucas, F., Pissard, S. & Lacroix, G. Does Liebig’s law of the minimum scale up from species to communities?. Oikos 117, 1741–1751 (2008).

    Article  Google Scholar 

  • 44.

    Sakurai, M., Suzuki, K., Onodera, M., Shinano, T. & Osaki, M. Analysis of bacterial communities in soil by PCR–DGGE targeting protease genes. Soil Biol. Biochem. 39, 2777–2784 (2007).

    CAS  Article  Google Scholar 

  • 45.

    Wang, Y. et al. Carbon input manipulations affecting microbial carbon metabolism in temperate forest soils—a comparative study between broadleaf and coniferous plantations. Geoderma 355, 113914 (2019).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Wan, X. et al. Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil. 387, 103–116 (2015).

    CAS  Article  Google Scholar 

  • 47.

    Amtmann, A., Troufflard, S. & Armengaud, P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plantarum. 133, 582–691 (2008).

    Article  CAS  Google Scholar 

  • 48.

    Pettigrew, W. T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plantarum. 133, 670–681 (2008).

    CAS  Article  Google Scholar 

  • 49.

    Markewitz, D. & Richter, D. D. Long-term soil potassium availability from a Kanhapludult to an aggrading loblolly pine ecosystem. Forest Ecol. Manag. 130, 109–129 (2000).

    Article  Google Scholar 

  • 50.

    Tripler, C. E., Kaushal, S. S. & Likens, G. E. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett. 9, 451–466 (2006).

    PubMed  Article  Google Scholar 

  • 51.

    Mori, T. et al. Testing potassium limitation on soil microbial activity in a sub-tropical forest. J. For. Res. 30, 2341–2347 (2019).

    CAS  Article  Google Scholar 

  • 52.

    Vuong, T. M. D., Zeng, J. Y. & Man, X. L. Spatial distribution andmonthly dynamics of soil carbon/nitrogen and hydrolases in Pinus sylvestris var. mongolica Litv. natural forest. Scientia Silvae Sinicae. 56, 40–47 (2020).

  • 53.

    Zeng, J. et al. An investigation into whether effect of tree species on soil microbial community is related with deciduous property or leaf shape. CATENA 195, 104699 (2020).

    Article  Google Scholar 

  • 54.

    Wu, Y. et al. Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Appl. Soil Ecol. 43, 234–240 (2009).

    Article  Google Scholar 

  • 55.

    Washburn, C. & Arthur, M. A. Spatial variability in soil nutrient availability in an oak-pine forest: Potential effects of tree species. Can. J. For. Res. 33, 2321–2330 (2003).

    Article  Google Scholar 

  • 56.

    Azeez, J. O. Recycling organic waste in managed tropical forest ecosystems: effects of arboreal litter types on soil chemical properties in Abeokuta, southwestern Nigeria. J. For. Res. 30, 1903–1911 (2019).

    CAS  Article  Google Scholar 

  • 57.

    Ha, T. Effectiveness of the Vietnamese Good Agricultural Practice (VietGAP) on Plant Growth and Quality of Choy Sum (Brassica rapa var. parachinensis) in Northern Vietnam. Aceh International Journal of Science and Technology. 3, 80–87 (2014).

  • 58.

    Jia, Z. et al. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients 7, 6924–6937 (2015).

    Article  CAS  Google Scholar 

  • 59.

    Zhang, Y., Sui, B., Shen, H. & Ouyang, L. Mapping stocks of soil total nitrogen using remote sensing data: a comparison of random forest models with different predictors. Comput. Electron. Agric. 160, 23–30 (2019).

    Article  Google Scholar 

  • 60.

    Sun, H. et al. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems. Sci. Total Environ. 673, 502–510 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 61.

    Ye, C. et al. Spatial and temporal dynamics of nutrients in riparian soils after nine years of operation of the Three Gorges Reservoir, China. Sci. Total Environ. 664, (2019).

  • 62.

    Li, J., Zhou, L. & Lin, W. Calla lily intercropping in rubber tree plantations changes the nutrient content, microbial abundance, and enzyme activity of both rhizosphere and non-rhizosphere soil and calla lily growth. Ind. Crop. Prod. (2019).

  • 63.

    Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soils. 6, 68–72 (1988).

    CAS  Article  Google Scholar 

  • 64.

    Ladd, J. N. & Butler, J. H. A. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4, 19–30 (1972).

    CAS  Article  Google Scholar 

  • 65.

    Ross, D. J. & Roberts, H. S. Enzyme activities and oxygen uptakes of soils under pasture in temperature and rainfall sequences. Eur. J. Soil Sci. 21, 368–381 (1970).

    CAS  Article  Google Scholar 

  • 66.

    Sharma, N., Bhalla, T. C. & Bhatt, A. K. Partial purification and characterization of extracellular cellulase from a strain of Trichoderma viride isolated from forest soil. Folia Microbiol. 36, 353–359 (1991).

    CAS  Article  Google Scholar 

  • 67.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 69.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73, 5261–5267 (2007).

    CAS  Article  Google Scholar 

  • 70.

    Schloss, P. D. et al. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 75, 7537–7541 (2009).

    CAS  Article  Google Scholar 

  • 71.

    Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 1–7 (2011).

    CAS  Article  Google Scholar 

  • 72.

    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).

    Google Scholar 

  • 73.

    Oksanen, J. et al. Package “vegan”. Commun. Ecol. Package, Version 2, 1–295 (2013).

    Google Scholar 

  • 74.

    Box, J. F. Guinness, Gosset, Fisher, and small samples. Stat. Sci. 2, 45–52 (1987).

    MathSciNet  MATH  Article  Google Scholar 

  • 75.

    Holland, S. M. Principal Components Analysis (PCA) 30602–32501 (Department of Geology, University of Georgia, Athens, GA, 2008).

    Google Scholar 

  • 76.

    Vu, V. Q. ggbiplot: A ggplot2 based biplot. R package. 342, (2011).

  • 77.

    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article  Google Scholar 

  • 78.

    Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT oceanographers have an explanation for the Arctic’s puzzling ocean turbulence

    Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents