in

Morphological function of toe fringe in the sand lizard Phrynocephalus mystaceus

  • 1.

    Higham, T. E. The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance. Integr. Comp. Biol. 47, 82–95 (2007).

    PubMed  Article  Google Scholar 

  • 2.

    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Stud. Behav. 16, 229–249 (1986).

    Article  Google Scholar 

  • 3.

    Cooper, W. E. Jr. & Frederick, W. G. Optimal flight initiation distance. J. Theor. Biol. 244, 59–67 (2007).

    MathSciNet  PubMed  MATH  Article  Google Scholar 

  • 4.

    Darwin, C. The Voyage of the Beagle (Doubleday and Co, New York, 1962).

    Google Scholar 

  • 5.

    Arnold, E. N. Identifying the effects of history on adaptation – origins of different sand-diving techniques in lizards. J. Zool. 235, 351–388 (1995).

    Article  Google Scholar 

  • 6.

    Attum, O., Eason, P. & Cobbs, G. Morphology, niche segregation, and escape tactics in a sand dune lizard community. J. Arid Environ. 68, 564–573 (2007).

    ADS  Article  Google Scholar 

  • 7.

    Kacoliris, F., Williams, J. & Molinari, A. Selection of key features of vegetation and escape behavior in the sand dune lizard (Liolaemus multimaculatus). Anim. Biol. 60, 157–167 (2010).

    Article  Google Scholar 

  • 8.

    Arnold, S. J. Morphology, performance and fitness. Am. Zool. 23, 347–361 (1983).

    Article  Google Scholar 

  • 9.

    Losos, J. B. & Sinervo, B. The effect of morphology and perch diameter on sprint performance of Anolis Lizards. J. Exp. Biol. 145, 23–30 (1989).

    Google Scholar 

  • 10.

    Losos, J. B. & Irschick, D. J. The effect of perch diameter on escape behavior of Anolis lizards: laboratory predictions and field tests. Anim. Behav. 51, 593–602 (1996).

    Article  Google Scholar 

  • 11.

    Luke, C. Convergent evolution of lizard toe fringes. Biol. J. Linn. Soc. 27, 1–16 (1986).

    ADS  Article  Google Scholar 

  • 12.

    Carothers, J. H. An experimental confirmation of morphological adaptation: toe fringes in the sand-dwelling lizard Uma scoparia. Evolution 40, 871–874 (1986).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Irschick, D. J. & Jayne, B. C. Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard Callisaurus draconoides and Uma scoparia. J. Exp. Biol. 21, 273–287 (1998).

    Google Scholar 

  • 14.

    Korff, W. L. & McHenry, M. J. Environmental differences in substrate mechanics do not affect sprinting performance in sand lizards (Uma scoparia and Callisaurus draconoides). J. Exp. Biol. 214, 122–130 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Bergmann, P. J. & Irschick, D. J. Alternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards. Evolution 64, 1569–1582 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Li, C., Hsieh, S. T. & Goldman, D. I. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides). J. Exp. Biol. 215, 3293–3308 (2012).

    PubMed  Article  Google Scholar 

  • 17.

    Zhao, E. M., Zhao, K. T. & Zhou, K. Y. Fauna Sinica, Reptilian Vol. 2, Squamata (Beijing Science Press, Beijing, Lacertilia, 1999).

    Google Scholar 

  • 18.

    Solovyeva, E. N. et al. Cenozoic aridization in Central Eurasia shaped diversification of toad-headed agamas (Phrynocephalus; Agamidae, Reptilia). Peer. J. 6, e4543 (2018).

    PubMed  Article  CAS  Google Scholar 

  • 19.

    Jiang, Z. G. et al. Red List of China’s Vertebrates. Biodivers. Sci. 24, 550–551 (2016).

    Google Scholar 

  • 20.

    Du, W. G., Lin, C. X., Shou, L. & Ji, X. Morphological correlates of locomotor performance in four species of lizards using different habitats. Zool. Res. 26, 41–46 (2005).

    CAS  Google Scholar 

  • 21.

    Pérez, A. & Fabré, N. N. Spatial population structure of the Neotropical tiger catfish Pseudoplatystoma metaense: skull and otolith shape variation. J. Fish Biol. 82, 1453–1468 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Higham, T. E. & Russel, A. P. Divergence in locomotor performance, ecology, and morphology between two sympatric sister species of desert-dwelling gecko. Biol. J. Linn. Soc. 101, 860–869 (2010).

    Article  Google Scholar 

  • 23.

    King, R. B. Analyzing the relationship between clutch size and female body size in reptiles. J. Herpetol. 34, 148–150 (2000).

    Article  Google Scholar 

  • 24.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: apractical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).

    MATH  Google Scholar 

  • 25.

    Imdadullah, M., Aslam, M. & Altaf, S. mctest: an R package for detection of collinearity among regressors. R. J. 8, 495–505 (2016).

    Article  Google Scholar 

  • 26.

    Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).

    Article  Google Scholar 

  • 27.

    Garthwaite, P. H. An interpretation of partial least squares. J. Am. Stat. Ass. 89, 122–127 (1994).

    MathSciNet  MATH  Article  Google Scholar 

  • 28.

    Abdi, H. Partial least squares regression and projection on latent structure regression. Wiley Interdiscip. Rev. Comput. 2, 97–106 (2010).

    Article  Google Scholar 

  • 29.

    Lesku, J. A., Roth, T. C. II., Amlaner, C. J. & Lima, S. L. A phylogenetic analysis of sleep architecture in mammals: the integration of anatomy, physiology, and ecology. Am. Nat. 168, 441–453 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Mitchell, R. J. Testing evolutionary and ecological hypotheses using path analysis and structural equation modeling. Funct. Ecol. 6, 123–129 (1992).

    Article  Google Scholar 

  • 31.

    Wootton, J. T. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75, 151–165 (1994).

    Article  Google Scholar 

  • 32.

    Arnold, S. J. Species densities of predators and their prey. Am. Nat. 106, 220–236 (1972).

    Article  Google Scholar 

  • 33.

    Team, R. C. A Language and Environment for Statistical Computing. Vienna: the R Foundation for Statistical Computing. http://www.R-project.org/ (2020).

  • 34.

    Irschick, D. J. & Garland, T. Jr. Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annu. Rev. Ecol. Syst. 32, 367–396 (2001).

    Article  Google Scholar 

  • 35.

    Damme, R. V. & Vanhooydonck, B. Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202 (2001).

    Article  Google Scholar 

  • 36.

    Ballinger, R. E., Nietfeldt, J. W. & Krupa, J. J. An experimental analysis of the role of the tail in a high running speed in Cnemidophorus sexlineatus (Reptilia; Squamata: Lacertilia). Herpetology 35, 114–116 (1979).

    Google Scholar 

  • 37.

    Downes, S. & Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators?. Ecology 82, 1293–1303 (2001).

    Article  Google Scholar 

  • 38.

    Johnson, T. P., Swoap, S. J., Bennett, A. F. & Josephson, R. K. Body size, muscle power output and limitations on burst locomotor performance in the lizard Dipsosaurus dorsalis. J. Exp. Biol. 174, 185–197 (1993).

    Google Scholar 

  • 39.

    Punzo, F. Tail Autotomy and running speed in the lizards Cophosaurus texanus and Uma notata. J. Herpetol. 16, 329–331 (1982).

    Article  Google Scholar 

  • 40.

    Borges-Landáez, P. A. & Shine, R. Influence of toe-clipping on running speed in Eulamprus quoyii, an Australian scincid lizard. J. Herpetol. 37, 592–595 (2003).

    Article  Google Scholar 

  • 41.

    Vanhooydonck, B., Damme, R. V. & Aerts, P. Variation in speed, gait characteristics and microhabitat use in lacertid lizards. J. Exp. Biol. 205, 1037–1046 (2002).

    PubMed  Google Scholar 

  • 42.

    Darwin, C. R. On the Origin of Species by Means of Natural Selection (Harvard University Press, Cambridge, 1859).

    Google Scholar 

  • 43.

    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).

    PubMed  Article  Google Scholar 

  • 44.

    Ricklefs, R. E. & Miles, D. B. Ecological and evolutionary inferences from morphology: an ecological perspective. In Ecological Morphology: Integrative and Organismal Biology (eds Wainwright, P. C. & Reilly, S. M.) 13–41 (University of Chicago Press, Chicago, 1994).

    Google Scholar 

  • 45.

    Dornburg, A., Sidlaukas, B., Santini, F. & Alfaro, N. M. E. The influence of an innovative locomotor strategy on the phenotypic diversifcation of triggerfsh (Family: Balistidae). Evolution 65, 1912–1926 (2011).

    PubMed  Article  Google Scholar 

  • 46.

    Vermeij, G. J. Historical contingency and the purported uniqueness of evolutionary innovations. Proc. Natl. Acad. Sci. USA 103, 1804–1809 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 47.

    Collins, C. E. & Higham, T. E. Individuals of the common Namib Day Gecko vary in how adaptive simplification alters sprint biomechanics. Sci. Rep. 7, 15595 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Cameron, S. F., Wynn, M. L. & Wilson, R. S. Sex-specific trade-offs and compensatory mechanisms: bite force and sprint speed pose conflicting demands on the design of geckos (Hemidactylus frenatus). J. Exp. Biol. 216, 3781–3789 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Stebbins, R. C. Some aspects of the ecology of the iguanid genus Uma. Ecol. Monogr. 14, 311–332 (1944).

    Article  Google Scholar 

  • 50.

    Evans, J. S., Eifler, D. A. & Eifler, M. A. Sand-diving as an escape tactic in the lizard Meroles anchietae. J. Arid Environ. 140, 1–5 (2017).

    ADS  Article  Google Scholar 

  • 51.

    Halloy, M., Etheridge, R. & Burghardt, G. M. To bury in sand: Phylogenetic relationships among lizard species of the boulengeri group, Liolaemus (Reptilia: Squamata: Tropiduridae), based on behavioral characters. Herpetol. Monogr. 12, 1–37 (1998).

    Article  Google Scholar 

  • 52.

    Bauwens, D., Garland, T., Castilla, A. M. & Van Damme, R. Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49, 848–863 (1995).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Bonine, K. E. & Garland, T. J. Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J. Zool. 248, 255–265 (1999).

    Article  Google Scholar 

  • 54.

    Shimada, T., Kadau, D., Shinbrot, T. & Herrmann, H. J. Swimming in granular media. Phys. Rev. E. 80, 020301 (2009).

    ADS  Article  CAS  Google Scholar 

  • 55.

    Maladen, R. D., Ding, Y., Li, C. & Goldman, D. I. Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Sci. 325, 314–318 (2009).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Sharpe, S. S., Ding, Y. & Goldman, D. I. Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard Scincus scincus. J. Exp. Biol. 216, 260–274 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Edwards, S., Herrel, A., Vanhooydonck, B., Measey, G. J. & Tolley, K. A. Diving in head first: morphology and performance is linked to predator escape strategy in desert lizards (Meroles, Lacertidae, Squamata). Biol. J. Linn. Soc. 119, 919–931 (2016).

    Article  Google Scholar 

  • 58.

    Bergmann, P. J., Pettinelli, K. J., Crockett, M. E. & Schaper, E. G. It’s just sand between the toes: how particle size and shape variation affect running performance and kinematics in a generalist lizard. J. Exp. Biol. 220, 3706–3716 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Arnold, E. N. Why do morphological phylogenies vary in quality—an investigation based on the comparative history of lizard clades. Proc. R. Soc. B. 240, 135–172 (1990).

    ADS  CAS  Google Scholar 

  • 60.

    Stellatelli, O. A., Block, C., Vega, L. E. & Cruz, F. B. Nonnative vegetation induces changes in predation pressure and escape behavior of two sand lizards (Liolaemidae: Liolaemus). Herpetology 71, 136–142 (2015).

    Article  Google Scholar 

  • 61.

    Etheridge, R. & de Queiroz, K. A phylogeny of Iguanidae. In Phylogenetic relationships of the lizard families, essays commemorating Charles L. Camp (eds Estes, R. & Pregill, G.) 283–368 (Stanford University Press, Stanford, 1988).

    Google Scholar 

  • 62.

    Pang, J. F. et al. A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 27, 398–409 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Guo, X. & Wang, Y. Partitioned Bayesian analyses, dispersal—vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a reevaluation. Mol. Phylogenet. Evol. 45, 643–662 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    MIT oceanographers have an explanation for the Arctic’s puzzling ocean turbulence

    Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents