in

Probing of heavy metals in the feathers of shorebirds of Central Asian Flyway wintering grounds

  • 1.

    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260. https://doi.org/10.1034/j.1600-0706.2003.12559.x (2003).

    Article  Google Scholar 

  • 2.

    Sampath, K. Studies on the ecology of shorebirds (Aves: Charadriifonnes) of the Great Vedaranyam Salt Swamp and the Pichavaram Mangroves of India. Ph.D. Thesis, submitted to Annamalai University, South India 202 (1989).

  • 3.

    Sampath, K. & Krishnamurthy, K. Shorebirds (Charadriiformes) of the Pichavaram Mangroves Tamilnadu, India. Wader Study Group Bull. 58, 24–27 (1990).

    Google Scholar 

  • 4.

    Balachandran, S. Avian Diversity in Coastal Wetlands of India and their Conservation Needs 155–163 (International Day for biological diversity, Marine biodiversity, 2012).

    Google Scholar 

  • 5.

    Sandilyan, S. & Kathiresan, K. Decline of mangroves–a threat of heavy metal poisoning in Asia. Ocean Coast. Manag. 102, 161–168 (2014).

    Article  Google Scholar 

  • 6.

    Pandiyan, J. & Asokan, S. Habitat use pattern of tidal mud and sand flats by shorebirds (Charadriiformes) wintering in southern India. J. Coast. Cons. 20(1), 1–11 (2015).

    Google Scholar 

  • 7.

    CAF Report. For a Preliminary List of Regional and National Activities That Contribute to Migratory Waterbird and Habitat Conservation in the CAF Region. https://www.cms.int/sites/default/files/document/CAF_action_plan_e_0.pdf (2005).

  • 8.

    Bamford, M., Watkins, D., Bancroft, W., Tischler, G. & Wahl, J. Migratory Shorebirds of the East Asian—Australasian Flyway Population Estimates and Internationally Important Sites (Wetlands International – Oceania, Canberra, 2008).

    Google Scholar 

  • 9.

    Agoramoorthy, G., Chen, F. A. & Hsu, M. J. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu India. Environ. Pollut 155(2), 320–326 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Agoramoorthy, G. & Pandiyan, J. Toxic pollution threatens migratory shorebirds in India. Environ. Sci. Pollut. Res. 23(15), 15771–15772 (2016).

    Article  Google Scholar 

  • 11.

    Salzano, R. & Angelone, M. Reactivity of urban environments towards legislative actions. The case of Roma (Italy). In E3S Web of Conferences.1, 22003 EDP Sciences (2013).

  • 12.

    Ullah, K., Hashmi, M. Z. & Malik, R. N. Heavy-metal levels in feathers of cattle egret and their surrounding environment: a case of the Punjab province, Pakistan. Arch. Environ. Contam. Toxicol. 66, 139–153 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Wilson, E. O. Threats to biodiversity. Am Sci. 261, 108–116 (1989).

    Article  Google Scholar 

  • 14.

    Huettmann, F. & Czech, B. The steady state economy for global shorebird and habitat conservation. Endang. Species Res. 2, 89–92 (2006).

    Article  Google Scholar 

  • 15.

    Taber, R. D. & Payne, N. F. Wildlife, Conservation, and Human Welfare: A United States and Canadian Perspective (Krieger Publishing Company, Malabar, Florida, 2003).

    Google Scholar 

  • 16.

    Rogers, D., Piersma, T., Lavaleye, M., Pearson, G. B. & de Goeij, P. Life Along Land’s Edge: Wildlife on the Shores of Roebuck Bay, Broome (Dept. of Conservation and Land Management, Western Kensington, 2003).

    Google Scholar 

  • 17.

    Custer, C. M., Custer, T. W., Michael, J. A., Alan, D. A. & David, E. W. Trace elements in Lesser Scaup (Aythyaaffinis) from the Mississippi flyway. Ecotoxicology 12, 47–54 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Johansen, P., Asmund, G. & Riget, F. High human exposure to lead through consumption of birds hunted with lead shot. Environ. Pollut. 127, 125–129 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Mansouri, N. E. et al. Research on the suitability of organosolv semi-chemical triticale fibres as reinforcement for recycled HDPE composites. Bio. Resources. 7(4), 5032–5047 (2012).

    Google Scholar 

  • 20.

    Syed, J. H. & Malik, R. N. Occurrence and source identification of organochlorine pesticides in the surrounding surface soils of the Ittehad Chemical Industries Kalashah Kaku, Pakistan. Environ. Earth Sci. 62(6), 1311–1321 (2011).

    CAS  Article  Google Scholar 

  • 21.

    Eqani, S. et al. Distribution and risk assessment of organochlorine contaminants in surface water from River Chenab, Pakistan. J. Environ. Monit. 14(6), 1645–1654 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Qadir, A. & Malik, R. N. Heavy metals in eight edible fish species from two polluted tributaries (Aik and Palkhu) of the River Chenab, Pakistan. Biol. Trace Elem. Res. 143, 1524–1540 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Hashmi, H. Z., Malik, R. N. & Shahbaz, M. Heavy metals in eggshells of cattle egret (Bubulcus ibis) and little egret (Egretta garzetta) from the Punjab province, Pakistan. Ecotoxicol Environ. Saf. 89, 158–165 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Shahbaz, M., Khan, S. & Tahir, M. I. The dynamic links between energy consumption, economic growth, financial development and trade in China: fresh evidence from multivariate framework analysis. Energy Econ. 40, 8–21 (2013).

    Article  Google Scholar 

  • 25.

    Kim, J. & Koo, T. H. Heavy metal concentrations in feathers of Korean shorebirds. Arch. Environ. Contam. Toxicol. 55, 122–128 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Boncompagni, E. et al. Egrets as monitors of trace metal contamination in wetland of Pakistan. Arch. Environ. Contam. Toxicol. 45, 399–406 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Nagajyoti, P. C., Lee, K. D. & Sreekanth, T. V. M. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem. Lett. 8(3), 199–216 (2010).

    CAS  Article  Google Scholar 

  • 28.

    Jaishankar, M., Mathew, B. B., Shah, M. S., Murthy, K. T. P. & Gowda, S. K. R. Biosorption of few heavy metal ions using agricultural wastes. J. Environ. Pollut. Hum. Health. 2, 1–6 (2014).

    Google Scholar 

  • 29.

    Deng, H., Zhang, Z., Chang, C. & Wang, Y. Trace metal concentration in Great Tit (Parus major) and Greenfinch (Carduelissinica) at the Western Mountains of Beijing, China. Environ. Poll. 148, 620–626 (2007).

    CAS  Article  Google Scholar 

  • 30.

    Kim, J. & Koo, T. H. The use of feathers to monitor heavy metal contamination in herons, KOrea. Arch. Environ. Contam. Toxicol. 53, 435–441 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Burger, J. & Gochfeld, M. Effects of lead and exercise on endurance and learning in young herring gulls. Ecotoxicol. Environ. Saf. 57, 136–144 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Scheifler, R., Coeurdassier, M. & Morilhat, C. Lead concentrations in feathers and blood of common blackbirds (Turdusmerula) and in earthworm inhabiting unpolluted and moderately polluted urban areas. Sci Total Environ. 371, 197–205 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Burger, J. Heavy metals in avian eggshells: another excretion method. J. Ecotoxicol. Environ. Health 41(2), 207–220 (1994).

    CAS  Article  Google Scholar 

  • 34.

    Furness, R. W. Birds as monitors of environmental change 102–120 (Chapman, New Yok, 1993).

    Google Scholar 

  • 35.

    Bostan, N., Ashrif, M., Mumtaz, A. S. & Ahmad, I. Diagnosis of heavy metal contamination in agro-ecology of Gujranwala, Pakistan using cattle egret as bioindicator. Ecotoxicology 6, 247–251 (2007).

    Article  CAS  Google Scholar 

  • 36.

    Lee, C. S. L., Li, X., Shi, W., Cheung, S. C. & Thornton, I. Metal contamination in urban, suburban and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci. Total Environ. 356, 45–61 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Balachandran, S., Sathiyaselvam, P. & Panda, S. Bird atlas of Chilka (ed. BNHS) 1–326 (BNHS, 2009).

  • 38.

    Sugathan, R. Observations on Spoon billed Sandpiper (Eurynorhynchus pygmaeus) in its wintering ground at Point Calimere, Thanjavur District, Tamil Nadu. J. Bombay Nat. Hist. Soc. 82(2), 407–409 (1985).

    Google Scholar 

  • 39.

    Spoon-billed Sandpiper Task Force. News Bull. No 19 (2018).

  • 40.

    Pandiyan, J. & Jagadheesan, R. Population characteristics of migratory shorebirds in the Point Calimere Wildlife Sanctuary, Tamil Nadu, India. J. Sci. Trans. Environ. Technov. 10(1), 31–36 (2016).

    Google Scholar 

  • 41.

    Manikannan, R. Diversity of Water birds in the point Calimere wildlife sanctuary, Tamil Nadu, India. Ph.D. thesis submitted to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India 264 (2011)

  • 42.

    Kathiresan, K. A review of studies on Pichavaram mangrove, southeast India. Hydrobiologia 430(1–3), 185–205 (2000).

    Article  Google Scholar 

  • 43.

    Godhantaraman, N. Seasonal variations in species composition, abundance, biomass and estimated production rates of tintinnids at tropical estuarine and mangrove waters, Parangipettai, southeast coast of India. J. Mar. Syst. 36, 161–171 (2002).

    Article  Google Scholar 

  • 44.

    Rajendran, N. & Kathiresan, K. How to increase juvenile shrimps in mangrove waters?. Wetlands Ecol. Manage. 12–3, 179–188 (2004).

    Article  Google Scholar 

  • 45.

    Nagarajan, R. & Thiyagesan, K. Waterbirds and substrate quality of the Pichavaram wetlands, southern India. Ibis. 138, 710–721 (1996).

    Article  Google Scholar 

  • 46.

    Burger, J. & Gochfeld, M. Metals in Laysan Albatrosses from Midway Atoll. Arch Environ Contamin. Toxicol. 38, 254–259 (2000).

    CAS  Article  Google Scholar 

  • 47.

    Dauwe, T., Bervoets, L., Blust, R., Pinxten, R. & Eens, M. Can excrements and feathers of nestling songbirds be used as a biomonitor for heavy metal pollution. Arch. Environ Contam Toxicol. 39, 541–546 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Nyholm, N. E. Y. Monitoring of terrestrial environmental metal pollution by means of free-living insectivorous birds. Ann. Chim. 85, 343–351 (1995).

    CAS  Google Scholar 

  • 49.

    Kim, J. & Oh, J. M. Monitoring of heavy metal contaminants using feathers of shorebirds Korea. J. Environ. Monit. 14, 651 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Dauwe, T. et al. Great and blue tit feathers as biomonitors for heavy metal pollution. Ecol. Ind. 1, 227–234 (2002).

    CAS  Article  Google Scholar 

  • 51.

    Sokal, R. R. & Rohlf, F. I. Biometry: The Principles and Practice of Statistics in Biological Research 1–776 (W.H. Freeman, New York, 2012).

    Google Scholar 

  • 52.

    Sandilyan, S. Habitat quality and waterbird utilization pattern of Pichavaram wetlands southern India. Ph.D. Thesis, Bharathidasan University, Tiruchirapalli, India 287 (2009)

  • 53.

    Loska, K. & Wiechuła, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51(8), 723–773 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 54.

    Balachandran, S. Avian Diversity in Coastal Wetlands of India and their Conservation Needs. International Day for biological diversity 155–163 (Uttar Pradesh State Biodiversity Board, Lucknow, 2012).

    Google Scholar 

  • 55.

    Worrall, D. H. Diet of the Dunlin Calidris alpina in the Severn estuary. Bird Study 31(3), 203–212 (1984).

    Article  Google Scholar 

  • 56.

    Pienkowski, M. W. Aspects of the ecology and behaviour of ringed and grey plovers charadrius hiaticula and pluvialis squatarola, Durham theses, Durham University. Durham E-Theses Online. http://etheses.dur.ac.uk/7868/ (1980).

  • 57.

    Hayman, P., Marchant, J., Prater, T. & Helm, C. Book for Shorebirds (1986)

  • 58.

    Higgins, P. J. & Davies, S. J. J. F. (eds) Handbook of Australian, New Zealand and Antarctic Birds Snipe to Pigeons (. Oxford University Press, Oxford, 1996).

    Google Scholar 

  • 59.

    Ali, S. The Book of Indian Birds 1–326 (Bombay Natural History Society and Oxford University Press, Oxford, Mumbai, 2002).

    Google Scholar 

  • 60.

    Everaarts, J. M. et al. Copper, zinc and cadmium in benthic organisms from the Java Sea and estuarine and coastal areas around East Java. Netherl. J. Sea Res. 23(4), 415–426 (1989).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Philips, D. J. H. The common mussels Mytilus edulis as an indicator of pollution by zinc, cadmium, lead, and copper. Effects of environmental variables on uptake of metals. Mar. Biol. 38, 59–69 (1976).

    Article  Google Scholar 

  • 62.

    Michael, H. Trace metals in the tissues and shells of Tympanotonus Fuscatus var Radula from the Mangrove Swamps of the Bukuma Oil Field, Niger Delta. Eur. J. Sci. Res. 24(4), 468–547 (2008).

    Google Scholar 

  • 63.

    Howarth, D. M., Hulbert, A. J. & Horning, D. A comparative Study of Heavy Metal Accumulation in Tissues of the Crested Tern, Sterna bergii, Breeding near Industrialized and Non-Industrialized Areas. Austr. Wildl. Res. 8, 665–672 (1981).

    CAS  Article  Google Scholar 

  • 64.

    Zdziarski, J. M., Mattix, M. & Bush, R. M. Zinc toxicosis in diving ducks. J. Zool. Wildl. Med. 25, 438–445 (1994).

    Google Scholar 

  • 65.

    Vanderzee, J., Zwart, P. & Schotman, A. J. H. Zinc poisoning in a Nicobar pigeon. J. Zool. Anim. Med. 16, 68–69 (1985).

    Article  Google Scholar 

  • 66.

    Bamford, M., Watkins, D., Bancroft, W., Tischler, G. & Wahl, J. Migratory Shorebirds of the East Asian—Australasian Flyway; Population Estimates and Internationally Important Sites (Wetlands International – Oceania, Canberra, 2008).

    Google Scholar 

  • 67.

    Balachandaran. International Day for Biological diversity. Marin Diversity. 155–163 (2006).

  • 68.

    Jerez, S. et al. Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environ. Pollut. 159, 2412–2419 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Markowski, M. et al. Avian feathers as bioindicators of the exposure to heavy metal contamination of food. Bull. Environ. Contam. Toxicol. 91, 302–305 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Lim, H. C. & Posa, C. Distribution and prey of migratory shorebirds on the northern coastline of Singapore. Raffles Bull. Zool. 62, 701–717 (2014).

    Google Scholar 

  • 71.

    Battley, P. F., Rogers, D. I., Piersma, T. & Koolhaas, A. Behavioural evidence for heat-load problems in great knots in tropical Australia fuelling for long-distance flight. Emu. 103(2), 97–103 (2003).

    Article  Google Scholar 

  • 72.

    Hockey, B. A., & Rayner, M. Comparison of grammar-based and statistical language models trained on the same data. In Proceedings of the AAAI Workshop on Spoken Language Understanding (2005).

  • 73.

    Mado-Filho, G. M. et al. Heavy metals in benthic organisms from Todosos Santos Bay, Brazil. Braz. J. Biol. 68(1), 95–100 (2008).

    Article  Google Scholar 

  • 74.

    Flora, G., Deepesh, G. & Archana, T. Toxicity of lead: a review with recent updates. Interdiscip. Toxicol. 5(2), 47–58 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Metcheva, R., Yurukova, L., Teodorova, S. & Nikolova, E. The penguin feathers as bioindicator of Antarctic environmental state. Environ. Monit. Assess. 362, 259–265 (2006).

    CAS  Google Scholar 

  • 76.

    Goss-Custard, J. D. & Jones, R. E. The diets of redshank and curlew. Bird Study 23(3), 233–243 (1976).

    Article  Google Scholar 

  • 77.

    Dhanakumar, S., Solaraj, G. & Mohanraj, R. Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region India Ecotoxicol. Environ. Saf. 113, 145–151 (2015).

    CAS  Article  Google Scholar 

  • 78.

    Eagles-Smith, C. A., Suchanek, T. H., Colwell, A. E. & Anderson, N. L. Mercury trophic transfer in a eutrophic lake: the importance of habitat-specific foraging. Ecol. Appl. 18, A196–A212 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    Eagles-Smith, C. A., Suchanek, T. H., Colwell, A. E. & Moyle, P. B. Changes in fish diets and food web mercury bioaccumulation induced by an invasive planktivorous fish. Ecol. Appl. 18, A213–A226 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Wyn, B., Kidd, K. A., Burgess, N. M. & Curry, R. A. Mercury bio-magnification in the food webs of acidic lakes in Kejimkujik National Park and National Historic Site, Nova Scotia. Can. J. Fish Aquat. Sci. 66, 1532–1545 (2009).

    CAS  Article  Google Scholar 

  • 81.

    Morel, F. M. M., Kraepiel, A. M. L. & Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst. 29, 543–566 (1998).

    Article  Google Scholar 

  • 82.

    Wolfe, M., Schwarzbach, S. & Sulaiman, R. A. Effects of Mercury on wildlife: a comprehensive review. Toxicol. Chem. 17, 146–160 (1998).

    CAS  Article  Google Scholar 

  • 83.

    Eisler, R. Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review (No. 11). Fish and Wildlife Service, US Department of the Interior. (1987).

  • 84.

    Arcas, J. Diet and prey selection of Common Sandpiper Actitis hypoleucos during winter. Int. J. Ornithol. 51(1), 203–213 (2004).

    Google Scholar 

  • 85.

    Zhang, L., Khaloo, S. S., Kuban, P. & Hauser, P. C. Analysis of electroplating baths by capillary electrophoresis with high voltage contactless conductivity detection. Meas. Sci. Technol. 17(12), 3317 (2006).

    ADS  CAS  Article  Google Scholar 

  • 86.

    Abdullah, M. et al. Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: a case study from severely contaminated areas. Chemosphere 119, 553–561 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Astorga España, M. S., Rodríguez Rodríguez, E. M. & Díaz Romero, C. Manganese, nickel, selenium and cadmium in molluscs from the Magellan Strait, Chile. Food Addit. Contamin. 21(8), 768–773 (2004).

    Article  CAS  Google Scholar 

  • 88.

    Dange, S. & Manoj, K. Bioaccumulation of heavy metals in sediment, polychaetes (annelid) worms, mud skipper and mud crab at Purna River Estuary, Navsari, Gujarat, India. Int. J. Curr. Microbiol. Appl. Sci. 4(9), 571–575 (2015).

    CAS  Google Scholar 

  • 89.

    Honda, K., Lee, D. P. & Tatsukawa, R. Lead poisoning in swans in Japan. Environ. Pollut. 65(3), 209–218 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Youssef, M. & El-Sorogy, A. Environmental assessment of heavy metal contamination in bottom sediments of Al-Kharrar lagoon, Rabigh, Red Sea, Saudi Arabia. Arab. J. Geosci. 9, 474 (2016).

    Article  CAS  Google Scholar 

  • 91.

    Youssef, M., Madkour, H., Mansour, A., Alharbi, W. & El-Taher, A. Invertebrate shells (mollusca, foraminifera) as pollution indicators, Red Sea Coast, Egypt. J. Afr. Earth Sci. 133, 74–85 (2017).

    ADS  CAS  Article  Google Scholar 

  • 92.

    Roginski, E. E. & Mertz, W. A biphasic response of rats to cobalt. J. Nutr. 107, 1537–1542 (1977).

    CAS  PubMed  Article  Google Scholar 

  • 93.

    Catsiki, V. A., Katsilieri, Ch. & Gialamas, V. Chromium distribution in benthic species from a gulf receiving tannery wastes (Gulf of Geras—Lesbos island, Greece). Sci. Total Environ. 145(2), 173–185 (1994).

    ADS  CAS  Article  Google Scholar 

  • 94.

    Ghani, A. Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of Brassica juncea L. Egypt. Acad. J. Biol. Sci. 2(1), 9–15 (2011).

    Google Scholar 

  • 95.

    Hon, M. et al. Speciation study of chromium, copper and nickel in coastal estuarine sediments polluted by domestic and industrial effluents. Mar. Pollut. Bull. 34(11), 949–959 (1997).

    Article  Google Scholar 

  • 96.

    Burger, J. et al. Mercury, lead, cadmium, arsenic, chromium and selenium in feathers of shorebirds during migrating through Delaware Bay, New Jersey: comparing the 1990s and 2011/2012. Toxics 3, 63–74 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 97.

    Janssens, E., Dauwe, T., Bervoets, L. & Eens, M. Inter and intraclutch variability in heavy metals in feathers of Great tit nestlings (Parus major) along a pollution gradient. Arch. Environ. Contam. Toxicol. 43, 323–329 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 98.

    Burger, J. & Gochfeld, M. Metal levels in feathers of 12 species of seabirds from MidwayAtoll in the northern Pacific Ocean. Sci. Total Environ. 257, 37–52 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 99.

    Mullin, D. W., Graham, A., Schoenjahn, M. J. & Walter, G. H. Phylogeography of the are Australian endemic Grey Falcon Falco hypoleucos: implications for conservation. Bird Conserv. Int. 30, 447–455 (2020).

    Article  Google Scholar 

  • 100.

    Lacerda, L. D., Bidone, E. D., Guimaraes, A. F. & Pfeiffer, W. C. Mercury concentrations in fish from the Itacaiúnas-Parauapebas River system, Carajás region, Amazon. Anais Acad. Bras. Ciênc. 66(3), 373–379 (1994).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    European rivers are fragmented by many more barriers than had been recorded

    Want cheaper nuclear energy? Turn the design process into a game