in

Microbial community composition in the rhizosphere of Larix decidua under different light regimes with additional focus on methane cycling microorganisms

  • 1.

    Paul, E. A. (ed.) Soil Microbiology, Ecology and Biochemistry (Academic Press, Amsterdam, 2015).

    Google Scholar 

  • 2.

    Nannipieri, P. et al. Microbial diversity and soil functions. Eur. J. Soil. Sci. 54, 655–670 (2003).

    Article  Google Scholar 

  • 3.

    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil. Biol. Biochem. 83, 184–199 (2015).

    CAS  Article  Google Scholar 

  • 4.

    Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13 (2009).

    CAS  Article  Google Scholar 

  • 5.

    Bais, H. P., Park, S.-W., Weir, T. L., Callaway, R. M. & Vivanco, J. M. How plants communicate using the underground information superhighway. Trends Plant. Sci. 9, 26–32 (2004).

    CAS  Article  Google Scholar 

  • 6.

    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. https://doi.org/10.1111/1574-6976.12028 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Praeg, N., Pauli, H. & Illmer, P. Microbial diversity in bulk and rhizosphere soil of Ranunculus glacialis along a high-alpine altitudinal gradient. Front. Microbiol. 10, 1429. https://doi.org/10.3389/fmicb.2019.01429 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Nacke, H. et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 6, e17000. https://doi.org/10.1371/journal.pone.0017000 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Jackson, R. B., Solomon, E. I., Canadell, J. G., Cargnello, M. & Field, C. B. Methane removal and atmospheric restoration. Nat. Sustain. 2, 436–438. https://doi.org/10.1038/s41893-019-0299-x (2019).

    Article  Google Scholar 

  • 10.

    Ciais, P. et al. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 11.

    Adam, P. S., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 11, 2407. https://doi.org/10.1038/ismej.2017.122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).

    Article  Google Scholar 

  • 13.

    Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).

    CAS  Article  Google Scholar 

  • 14.

    Op den Camp, H. J. M. et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 1, 293–306. https://doi.org/10.1111/j.1758-2229.2009.00022.x (2009).

    CAS  Article  PubMed  Google Scholar 

  • 15.

    Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714. https://doi.org/10.1128/AEM.69.11.6703-6714.2003 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Kolb, S. The quest for atmospheric methane oxidizers in forest soils. Environ. Microbiol. Rep. 1, 336–346 (2009).

    CAS  Article  Google Scholar 

  • 17.

    Plesa, I. et al. Effects of drought and salinity on European Larch (Larix decidua Mill.) seedlings. Forests 9, 320. https://doi.org/10.3390/f9060320 (2018).

    Article  Google Scholar 

  • 18.

    Falk, W., Bachmann-Gigl, U. & Kölling, C. Die Europäische Lärche im Klimawandel. In Beiträge zur Europäischen Lärche (ed. Schmidt, O.) 19–27 (Bayrische Landesanstalt für Wald und Forstwirtschaft, Freising, 2012).

    Google Scholar 

  • 19.

    Obojes, N. et al. Water stress limits transpiration and growth of European larch up to the lower subalpine belt in an inner-alpine dry valley. New Phytol. 220, 460–475 (2018).

    Article  Google Scholar 

  • 20.

    Wieser, G. (ed.) Trees at Their Upper Limit. Treelife Limitation at the Alpine Timberline (Springer, Dordrecht, 2007).

    Google Scholar 

  • 21.

    Dedysh, S. N. et al. Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem. Int. J. Syst. Evol. Microbiol. 65, 3618–3624. https://doi.org/10.1099/ijsem.0.000465 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Praeg, N., Wagner, A. O. & Illmer, P. Plant species, temperature, and bedrock affect net methane flux out of grassland and forest soils. Plant Soil 410, 193–206 (2017).

    CAS  Article  Google Scholar 

  • 23.

    Lladó, S., López-Mondéjar, R. & Baldrian, P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00063-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil. Biol. Biochem. 84, 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 (2015).

    CAS  Article  Google Scholar 

  • 25.

    Liu, J. et al. Characteristics of bulk and rhizosphere soil microbial community in an ancient Platycladus orientalis forest. Appl. Soil Ecol. 132, 91–98. https://doi.org/10.1016/j.apsoil.2018.08.014 (2018).

    ADS  Article  Google Scholar 

  • 26.

    Uroz, S. et al. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci. Rep. 6, 27756. https://doi.org/10.1038/srep27756 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Štursová, M., Bárta, J., Šantrůčková, H. & Baldrian, P. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw185 (2016).

    Article  PubMed  Google Scholar 

  • 28.

    Ferrari, B., Winsley, T., Ji, M. & Neilan, B. Insights into the distribution and abundance of the ubiquitous candidatus Saccharibacteria phylum following tag pyrosequencing. Sci. Rep. 4, 3957. https://doi.org/10.1038/srep03957 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Starr, E. P. et al. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 6, 122. https://doi.org/10.1186/s40168-018-0499-z (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Brewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A. & Fierer, N. Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nat. Microbiol. 2, 16198. https://doi.org/10.1038/nmicrobiol.2016.198 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744. https://doi.org/10.3389/fmicb.2016.00744 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).

    Article  Google Scholar 

  • 33.

    Johnston-Monje, D., Lundberg, D. S., Lazarovits, G., Reis, V. M. & Raizada, M. N. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405, 337–355. https://doi.org/10.1007/s11104-016-2826-0 (2016).

    CAS  Article  Google Scholar 

  • 34.

    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Nat. Acad. Sci. USA 109, 21390–21395. https://doi.org/10.1073/pnas.1215210110 (2012).

    ADS  Article  PubMed  Google Scholar 

  • 35.

    Kottke, I. & Oberwinkler, F. Comparative studies on the mycorrhization of Larix decidua and Picea abies by Suillus grevillei. Trees https://doi.org/10.1007/BF00196758 (1988).

    Article  Google Scholar 

  • 36.

    Uroz, S., Buée, M., Murat, C., Frey-Klett, P. & Martin, F. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ. Microbiol. Rep. 2, 281–288. https://doi.org/10.1111/j.1758-2229.2009.00117.x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 37.

    Mapelli, F. et al. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence. ISME J. 12, 1188. https://doi.org/10.1038/s41396-017-0026-4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Mello, B. L., Alessi, A. M., McQueen-Mason, S., Bruce, N. C. & Polikarpov, I. Nutrient availability shapes the microbial community structure in sugarcane bagasse compost-derived consortia. Sci. Rep. 6, 38781. https://doi.org/10.1038/srep38781 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Turnbull, G. A., Morgan, J. A. W., Whipps, J. M. & Saunders, J. R. The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol. Ecol. 36, 21–31. https://doi.org/10.1111/j.1574-6941.2001.tb00822.x (2001).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    Rees, D. C., Johnson, E. & Lewinson, O. ABC transporters: the power to change. Nat. Rev. Mol. Cell. Biol. 10, 218–227. https://doi.org/10.1038/nrm2646 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Aronson, E. L., Allison, S. D. & Helliker, B. R. Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front. Microbiol. 4, 225. https://doi.org/10.3389/fmicb.2013.00225 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Dalal, R. C., Allen, D. E., Livesley, S. J. & Richards, G. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes. A review. Plant Soil 309, 43–76 (2008).

    CAS  Article  Google Scholar 

  • 43.

    Martins, C. S. C., Nazaries, L., Macdonald, C. A., Anderson, I. C. & Singh, B. K. Water availability and abundance of microbial groups are key determinants of greenhouse gas fluxes in a dryland forest ecosystem. Soil Biol. Biochem. 86, 5–16. https://doi.org/10.1016/j.soilbio.2015.03.012 (2015).

    CAS  Article  Google Scholar 

  • 44.

    Praeg, N., Schwinghammer, L. & Illmer, P. Larix decidua and additional light affect the methane balance of forest soil and the abundance of methanogenic and methanotrophic microorganisms. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnz259 (2020).

    Article  Google Scholar 

  • 45.

    Ström, L., Mastepanov, M. & Christensen, T. R. Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75, 65–82 (2005).

    Article  Google Scholar 

  • 46.

    Borrel, G. et al. Genome sequence of “Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a third thermoplasmatales-related methanogenic archaeon from human feces. Genome Announc. 1, e004523. https://doi.org/10.1128/genomeA.00453-13 (2013).

    Article  Google Scholar 

  • 47.

    Deng, Y., Liu, P. & Conrad, R. Effect of temperature on the microbial community responsible for methane production in alkaline NamCo wetland soil. Soil Biol. Biochem. 132, 69–79. https://doi.org/10.1016/j.soilbio.2019.01.024 (2019).

    CAS  Article  Google Scholar 

  • 48.

    Söllinger, A. et al. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol. Ecol. 92, 149. https://doi.org/10.1093/femsec/fiv149 (2016).

    CAS  Article  Google Scholar 

  • 49.

    Berghuis, B. A. et al. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc. Natl. Acad. Sci. U.S.A. 116, 5037. https://doi.org/10.1073/pnas.1815631116 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Cai, Y., Zheng, Y., Bodelier, P. L. E., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 7, 11728 (2016).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Henckel, T., Jäckel, U., Schnell, S. & Conrad, R. Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl. Environ. Microbiol. 60, 1801–1808 (2000).

    Article  Google Scholar 

  • 52.

    Ricke, P., Kolb, S. & Braker, G. Application of a newly developed ARB software-integrated tool for in silico terminal restriction fragment length polymorphism analysis reveals the dominance of a novel pmoA cluster in a forest soil. Appl. Environ. Microbiol. 71, 1671–1673. https://doi.org/10.1128/AEM.71.3.1671-1673.2005 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Pratscher, J., Dumont, M. G. & Conrad, R. Assimilation of acetate by the putative atmospheric methane oxidizers belonging to the USCα clade. Environ. Microbiol. 13, 2692–2701. https://doi.org/10.1111/j.1462-2920.2011.02537.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Cai, Y., Zhou, X., Shi, L. & Jia, Z. Atmospheric methane oxidizers are dominated by upland soil cluster alpha in 20 forest soils of China. Microb. Ecol. 80, 859–871. https://doi.org/10.1007/s00248-020-01570-1 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Täumer, J. et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob. Change Biol. https://doi.org/10.1111/gcb.15430 (2020).

    Article  Google Scholar 

  • 56.

    Andreote, F. D. et al. Culture-independent assessment of Rhizobiales-related alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic eucalyptus. Microb. Ecol. 57, 82–93. https://doi.org/10.1007/s00248-008-9405-8 (2009).

    Article  PubMed  Google Scholar 

  • 57.

    Iguchi, H., Yurimoto, H. & Sakai, Y. Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms 3, 137–151. https://doi.org/10.3390/microorganisms3020137 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Ho, A. et al. Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front. Microbiol. 7, 1285. https://doi.org/10.3389/fmicb.2016.01285 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Iguchi, H., Yurimoto, H. & Sakai, Y. Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl. Environ. Microbiol. 77, 8509–8515. https://doi.org/10.1128/AEM.05834-11 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Veraart, A. J. et al. Living apart together—bacterial volatiles influence methanotrophic growth and activity. ISME J. 12, 1163–1166 (2018).

    CAS  Article  Google Scholar 

  • 61.

    Karlsson, A. E., Johansson, T. & Bengtson, P. Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol. Ecol. 80, 305–311 (2012).

    CAS  Article  Google Scholar 

  • 62.

    Haichar, F. E. Z. et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2, 1221–1230. https://doi.org/10.1038/ismej.2008.80 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 63.

    Tkacz, A., Cheema, J., Chandra, G., Grant, A. & Poole, P. S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 9, 2349–2359. https://doi.org/10.1038/ismej.2015.41 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Schinner, F. et al. (eds) Methods in Soil Biology (Springer, Berlin, 1996).

    Google Scholar 

  • 65.

    Barillot, C. D. C., Sarde, C.-O., Bert, V., Tarnaud, E. & Cochet, N. A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann. Microbiol. 63, 471–476 (2013).

    CAS  Article  Google Scholar 

  • 66.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Nat. Acad. Sci. U.S.A. 108(Suppl 1), 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).

    ADS  Article  Google Scholar 

  • 67.

    Ihrmark, K. et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677. https://doi.org/10.1111/j.1574-6941.2012.01437.x (2012).

    CAS  Article  PubMed  Google Scholar 

  • 68.

    White, T. J., Bruns, T., Lee, S. & Taylor, J. W. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, Cambridge, 1990).

    Google Scholar 

  • 69.

    Schloss, P. D. et al. Introducing mothur. Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS  Article  Google Scholar 

  • 70.

    Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 25, 914–919. https://doi.org/10.1111/2041-210X.12073 (2013).

    Article  Google Scholar 

  • 71.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mah, F. VSEARCH. A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    Article  Google Scholar 

  • 72.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 73.

    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277. https://doi.org/10.1111/mec.12481 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 74.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. https://doi.org/10.1128/AEM.00062-07 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 75.

    Mantel, N. The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209–220 (1967).

    CAS  Google Scholar 

  • 76.

    Martin, A. P. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl. Environ. Microbiol. 68, 3673–3682. https://doi.org/10.1128/AEM.68.8.3673-3682.2002 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 77.

    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).

    Article  Google Scholar 

  • 78.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017). http://www.R-project.org. Accessed 24 Sept 2018.

  • 79.

    Oksanen, J. et al. vegan. Community Ecology Package. R package version 2.4–4 (2017). https://CRAN.R-project.org/package=vegan. Accessed 24 Sept 2018.

  • 80.

    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44, W3–W10. https://doi.org/10.1093/nar/gkw343 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 81.

    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16SrRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS  Article  Google Scholar 

  • 82.

    White, J. R., Nagarajan, N. & Pop, M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 5, e1000352. https://doi.org/10.1371/journal.pcbi.1000352 (2009).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 83.

    Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124. https://doi.org/10.1093/bioinformatics/btu494 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 84.

    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114. https://doi.org/10.1093/nar/gkr988 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 85.

    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    Article  Google Scholar 

  • 86.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504. https://doi.org/10.1101/gr.1239303 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 87.

    Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A.-K. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ. Microbiol. 20, 1016–1029. https://doi.org/10.1111/1462-2920.14036 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 88.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 89.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. https://doi.org/10.1093/sysbio/syq010 (2010).

    CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    To boost emissions reductions from electric vehicles, know when to charge

    Discovery allows early detection of shade avoidance syndrome