in

Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan

  • 1.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS  Article  Google Scholar 

  • 2.

    Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).

    Article  Google Scholar 

  • 3.

    Tsujino, R., Yumoto, T., Kitamura, S., Djamaluddin, I. & Darnaedi, D. History of forest loss and degradation in Indonesia. Land use policy 57, 335–347 (2016).

    Article  Google Scholar 

  • 4.

    Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).

    Article  Google Scholar 

  • 5.

    Miettinen, J., Hooijer, A., Wang, J., Shi, C. & Liew, S. C. Peatland degradation and conversion sequences and interrelations in Sumatra. Reg. Environ. Change 12, 729–737 (2012).

    Article  Google Scholar 

  • 6.

    Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Change 4, 730 (2014).

    Article  Google Scholar 

  • 7.

    Stibig, H. J., Achard, F., Carboni, S., Rasi, R. & Miettinen, J. Change in tropical forest cover of Southeast Asia from 1990 to 2010. Biogeosciences 11, 247–258 (2014).

    Article  Google Scholar 

  • 8.

    Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).

    CAS  Article  Google Scholar 

  • 9.

    Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886 (2016).

    CAS  Article  Google Scholar 

  • 10.

    Koplitz, S. N. et al. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 094023 (2016).

    Article  Google Scholar 

  • 11.

    Crippa, P. et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 6, 37074 (2016).

    CAS  Article  Google Scholar 

  • 12.

    Wijaya, A. R. et al. How can Indonesia achieve its climate change mitigation goal? An analysis of potential emissions reductions from energy and land-use policies. World Resour. Inst. (Washington D.C, 2017).

  • 13.

    Cochrane, M. A. Fire science for rainforests. Nature 421, 913 (2003).

    CAS  Article  Google Scholar 

  • 14.

    Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Philos. Trans. Royal Soc. B 371, 20150176 (2016).

    Article  CAS  Google Scholar 

  • 15.

    Miettinen, J., Shi, C. & Liew, S. C. Fire distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with special emphasis on peatland fires. Environ. Manag. 60, 747–757 (2017).

    Article  Google Scholar 

  • 16.

    Goldammer, J. G. History of equatorial vegetation fires and fire research in Southeast Asia before the 1997–98 episode: a reconstruction of creeping environmental changes. Mitig. Adapt. Strat. Glob. Chang. 12, 13–32 (2007).

    Article  Google Scholar 

  • 17.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS  Article  Google Scholar 

  • 18.

    Baker, J. & Spracklen, D. Climate benefits of intact Amazon forests and the biophysical consequences of disturbance. Front. For. Glob. Chang. 2, 47 (2019).

    Article  Google Scholar 

  • 19.

    Uhl, C., Kauffman, J. B. and Cummings, D. L. Fire in the Venezuelan Amazon 2: environmental conditions necessary for forest fires in the evergreen rainforest of Venezuela. Oikos 53, 176–184 (1988).

  • 20.

    Dommain, R., Couwenberg, J., Glaser, P. H., Joosten, H. & Suryadiputra, I. N. N. Carbon storage and release in Indonesian peatlands since the last deglaciation. Quat. Sci. Rev. 97, 1–32 (2014).

    Article  Google Scholar 

  • 21.

    Cole, L. E. S., Bhagwat, S. A. & Willis, K. J. Fire in the swamp forest: palaeoecological insights into natural and human-induced burning in intact tropical peatlands. Front. For. Glob. Chang. 2, 48 (2019).

    Article  Google Scholar 

  • 22.

    Warren, M., Hergoualc’h, K., Kauffman, J. B., Murdiyarso, D. & Kolka, R. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon balanc. management 12, 12 (2017).

    Article  CAS  Google Scholar 

  • 23.

    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. chang. biol. 17, 798–818 (2011).

    Article  Google Scholar 

  • 24.

    Page, S. E. et al. A record of late pleistocene and holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J. Quat. Sci. 19, 625–635 (2004).

    Article  Google Scholar 

  • 25.

    Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. 122, 903–917 (2017).

    Article  Google Scholar 

  • 26.

    Sabajo, C. R. et al. Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia. Biogeosciences 14, 4619–4635 (2017).

    CAS  Article  Google Scholar 

  • 27.

    McAlpine, C. A. et al. Forest loss and Borneo’s climate. Environ. Res. Lett. 13, 044009 (2018).

    Article  Google Scholar 

  • 28.

    Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195 (2015).

    Article  Google Scholar 

  • 29.

    Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).

    Article  CAS  Google Scholar 

  • 30.

    Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).

    Article  Google Scholar 

  • 31.

    Hoscilo, A., Page, S. E., Tansey, K. J. & Rieley, J. O. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. Int. J. Wildland Fire 20, 578–588 (2011).

    Article  Google Scholar 

  • 32.

    Laurance, W. F. Do edge effects occur over large spatial scales? Trends Ecol. Evol. 15, 134–135 (2000).

    CAS  Article  Google Scholar 

  • 33.

    Cochrane, M. A. & Laurance, W. F. Fire as a large-scale edge effect in Amazonian forests. J. Tropi. Ecol. 18, 311–325 (2002).

    Article  Google Scholar 

  • 34.

    Laurance, W. F., Laurance, S. G. & Delamonica, P. Tropical forest fragmentation and greenhouse gas emissions. For. Ecol. Manag. 110, 173–180 (1998).

    Article  Google Scholar 

  • 35.

    Curran, L. M. et al. Impact of El Nino and logging on canopy tree recruitment in Borneo. Science 286, 2184–2188 (1999).

    CAS  Article  Google Scholar 

  • 36.

    Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).

    CAS  Article  Google Scholar 

  • 37.

    Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 1–6 (2017).

    Article  CAS  Google Scholar 

  • 38.

    Briant, G., Gond, V. & Laurance, S. G. Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol. conserv. 143, 2763–2769 (2010).

    Article  Google Scholar 

  • 39.

    Didham, R. K. & Lawton, J. H. Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31, 17–30 (1999).

    Google Scholar 

  • 40.

    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053 (2012).

    CAS  Article  Google Scholar 

  • 41.

    Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 338, 410–421 (2019).

    Article  Google Scholar 

  • 42.

    Cattau, M. E. et al. Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Glob. Environ. Chang. 39, 205–219 (2016).

    Article  Google Scholar 

  • 43.

    Wooster, M. J., Perry, G. L. W. and Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences 9, (2012)

  • 44.

    Spessa, A. C. et al. Seasonal forecasting of fire over Kalimantan, Indonesia. Nat. Hazards Earth Syst. Sci. 15, 429–442 (2015).

    Article  Google Scholar 

  • 45.

    Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl Acad. Sci. 113, 9204–9209 (2016).

    CAS  Article  Google Scholar 

  • 46.

    Langner, A. & Siegert, F. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob. Chang. Biol. 15, 48–62 (2009).

    Article  Google Scholar 

  • 47.

    Pan, X., Chin, M., Ichoku, C. M. & Field, R. D. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean Dipole during 1979–2016. J. Geophys. Res. 123, 7974–7988 (2018).

    Google Scholar 

  • 48.

    Konecny, K. et al. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob. Chang. Biol. 22, 1469–1480 (2016).

    Article  Google Scholar 

  • 49.

    Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C. & Page, S. E. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 024014 (2017).

    Article  CAS  Google Scholar 

  • 50.

    Langner, A., Miettinen, J. & Siegert, F. Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob. Chang. Biol. 13, 2329–2340 (2007).

    Article  Google Scholar 

  • 51.

    van der Werf, G. R. et al. Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl Acad. Sci. 105, 20350–20355 (2008).

    Article  Google Scholar 

  • 52.

    Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640 (2016).

    Article  Google Scholar 

  • 53.

    Wahyunto, R. S. & Suparto, S. H. Maps of area of peatland distribution and carbon content in Kalimantan, 2000–2002. Wetl. Int.-Indones. Program. Wildl. Habitat Can. (WHC) Bogor. (2004).

  • 54.

    Purnomo A. Protecting Indonesia’s Forests, Pros-Cons Policy of Moratorium on Forests and Peatlands (Kepustakaan Populer Gramedia, Jakarta, Indonesia, 2012).

  • 55.

    Normile, D. Indonesia’s fires are bad, but new measures prevented them from becoming worse. Sci. Mag. https://www.sciencemag.org/news/2019/10/indonesias-fires-are-bad-new-measures-prevented-them-becoming-worse (2019).

  • 56.

    Purnomo, H. et al. Fire economy and actor network of forest and land fires in Indonesia. For. Policy Econ. 78, 21–31 (2017).

    Article  Google Scholar 

  • 57.

    Seymour, F. Indonesia Reduces Deforestation, Norway to Pay Up. World Resources Institute. https://www.wri.org/blog/2019/02/indonesia-reduces-deforestation-norway-pay (2019).

  • 58.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, 1500052 (2015).

    Article  Google Scholar 

  • 59.

    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Article  Google Scholar 

  • 60.

    Gaveau, D. L. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci. Rep. 4, 6112 (2014).

    CAS  Article  Google Scholar 

  • 61.

    Wooster, M. et al. New tropical peatland gas and particulate emissions factors indicate 2015 Indonesian fires released far more particulate matter (but less methane) than current inventories imply. Remote Sens. 10, 495 (2018).

    Article  Google Scholar 

  • 62.

    Taufik, M. et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nat. Clim. Chang. 7, 428–431 (2017).

    Article  Google Scholar 

  • 63.

    Margono, B. A. et al. Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environ. Res. Lett. 7, 034010 (2012).

    Article  Google Scholar 

  • 64.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  Google Scholar 

  • 65.

    Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).

    Article  Google Scholar 

  • 66.

    Lohberger, S., Stängel, M., Atwood, E. C. & Siegert, F. Spatial evaluation of Indonesia’s 2015 fire‐affected area and estimated carbon emissions using Sentinel‐1. Glob. Chang. Biol. 24, 644–654 (2015).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    To boost emissions reductions from electric vehicles, know when to charge

    Discovery allows early detection of shade avoidance syndrome