Currey, J. D. The failure of exoskeletons and endoskeletons. J. Morphol. 123, 1–16 (1967).
Taylor, D. & Dirks, J.-H. Shape optimization in exoskeletons and endoskeletons: a biomechanics analysis. J. R. Soc. Interface 9, 3480–3489 (2012).
Boßelmann, F., Romano, P., Fabritius, H., Raabe, D. & Epple, M. The composition of the exoskeleton of two crustacea: The American lobster Homarusamericanus and the edible crab Cancerpagurus. Thermochim. Acta 463, 65–68 (2007).
Tynyakov, J. et al. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties. J. Exp. Biol. 218, 3487–3498 (2015).
Sugawara, A. et al. Self-organization of oriented calcium carbonate/polymer composites: Effects of a matrix peptide isolated from the exoskeleton of a crayfish. Angew. Chemie – Int. Ed. 45, 2876–2879 (2006).
Inoue, H., Ozaki, N. & Nagasawa, H. Purification and structural determination of a phosphorylated peptide with anti-calcification and chitin-binding activities in the exoskeleton of the crayfish, Procambarus clarkii. Biosci. Biotechnol. Biochem. 65, 1840–1848 (2001).
Taylor, J. R. A., Hebrank, J. & Kier, W. M. Mechanical properties of the rigid and hydrostatic skeletons of molting blue crabs, Callinectes sapidus Rathbun. J. Exp. Biol. 210, 4272–4278 (2007).
Chen, P. Y., Lin, A. Y. M., McKittrick, J. & Meyers, M. A. Structure and mechanical properties of crab exoskeletons. Acta Biomater. 4, 587–596 (2008).
Cribb, B. W. et al. Structure, composition and properties of naturally occuring non-calcified crustacean cuticle. Arthropod Struct. Dev. 38, 173–178 (2009).
Bentov, S., Weil, S., Glazer, L., Sagi, A. & Berman, A. Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. J. Struct. Biol. 171, 207–215 (2010).
Halcrow, K. Cell and tissue the fine structure of the carapace integument of Daphniamagna Straus (Crustacea Branchiopoda). Cell Tissue Res. 276, 267–276 (1976).
Benzie, J. A. H. Cladocera: The Genus Daphnia (Including Daphniopsis) Benzie Teil 1. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World Vol. 21 (2005).
Harvell, C. D. & Tollrian, R. The Ecology and Evolution of Inducible Defenses Vol. 65. (Princeton University Press, Princeton, 1999).
Laforsch, C., Beccara, L. & Tollrian, R. Inducible defenses The relevance of chemical alarm cues in Daphnia. Limnol. Oceanogr. 51, 1466–1472 (2006).
Tollrian, R. Predator-induced morphological defenses: Costs, life history shifts, and maternal effects in Daphniapulex. Ecology 76, 1691–1705 (1995).
Van Der Stap, I., Vos, M. & Mooij, W. M. Inducible defenses and rotifer food chain dynamics. Hydrobiologia 593, 103–110 (2007).
Altwegg, R., Marchinko, K. B., Duquette, S. L. & Anholt, B. R. Dynamics of an inducible defence in the protist Euplotes. Arch. Hydrobiol. 160, 431–446 (2004).
Frost, S. D. W. The immune system as an inducible defense. in The Ecology and Evolution of Inducible Defenses 104–126 (1999).
Grant, J. W. G. W. G. & Bayly, I. A. E. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. 26, 201–218 (1981).
Laforsch, C. & Tollrian, R. Inducible defenses in multipredator environments: Cyclomorphosis in Daphniacucullata. Ecology 85, 2302–2311 (2004).
Ritschar, S., Rabus, M. & Laforsch, C. Predator-specific inducible morphological defenses of a water flea against two freshwater predators. J. Morphol. 281, 653–661 (2020).
Laforsch, C., Ngwa, W., Grill, W. & Tollrian, R. An acoustic microscopy technique reveals hidden morphological defenses in Daphnia. PNAS 101, 15911–15914 (2004).
Rabus, M., Söllradl, T., Clausen-Schaumann, H. & Laforsch, C. Uncovering ultrastructural defences in Daphniamagna. PLoS ONE 8, e67856 (2013).
Otte, K. A., Fröhlich, T., Arnold, G. J. & Laforsch, C. Proteomic analysis of Daphniamagna hints at molecular pathways involved in defensive plastic responses. BMC Genomics 15, 306 (2014).
Otte, K. A., Schrank, I., Fröhlich, T., Arnold, G. J. & Laforsch, C. Interclonal proteomic responses to predator exposure in Daphnia magna may depend on predator composition of habitats. Mol. Ecol. 24, 3901–3917 (2015).
Krafft, C. et al. Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches. Angew. Chem. Int. Ed. 56, 4392–4430 (2017).
Butler, H. J. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664–687 (2016).
Kuhar, N., Sil, S., Verma, T. & Umapathy, S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv. 8, 25888–25908 (2018).
Talari, A. C. S., Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 50, 46–111 (2015).
Kruppert, S. et al. Push or Pull? The light-weight architecture of the Daphniapulex carapace is adapted to withstand tension, not compression. J. Morphol. 277, 1320–1328 (2016).
Gierlinger, N., Reisecker, C., Hild, S. & Gamsjaeger, S. Raman microscopy: Insights into chemistry and structure of biological materials. in Materials Design Inspired by Nature: Function Through Inner Architecture. 151–179 (2013). https://doi.org/10.1039/9781849737555-00151.
Rabus, M., Waterkeyn, A., Van Pottelbergh, N., Brendonck, L. & Laforsch, C. Interclonal variation, effectiveness and long-term implications of Triops-induced morphological defences in Daphniamagna Strauss. J. Plankton Res. 34, 152–160 (2012).
Rabus, M. & Laforsch, C. Growing large and bulky in the presence of the enemy. Funct. Ecol. 25, 1137–1143 (2011).
Nikolov, S. et al. Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations. J. Mech. Behav. Biomed. Mater. 4, 129–145 (2011).
Al-Sawalmih, A., Li, C., Siegel, S., Fratzl, P. & Paris, O. On the stability of amorphous minerals in lobster cuticle. Adv. Mater. 21, 4011–4015 (2009).
Luquet, G. Biomineralizations: Insights and prospects from crustaceans. Zookeys 176, 103–121 (2012).
Becker, A., Ziegler, A. & Epple, M. The mineral phase in the cuticles of two species of crustacea consists of magnesium calcite, amorphous calcium carbonate and amorphous calcium phosphate. R. Soc. Chem. 1814–1820 (2005).
Roer, R. & Dillaman, R. The structure and clacification of the crustacean cuticle. Am. Zool. 24, 893–909 (1984).
Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).
Bots, P., Benning, L. G., Rodriguez-Blanco, J.-D., Roncal-Herrero, T. & Shaw, S. Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst. Growth Des. 12, 3806–3814 (2012).
Addadi, L., Raz, S. & Weiner, S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15, 959–970 (2003).
Kawasaki, T. et al. Crystalline calcium phosphate and magnetic mineral content of Daphnia resting eggs. Zool. Sci. 21, 63–67 (2004).
Gerrish, G. A. & Cáceres, C. E. Genetic versus environmental influence on pigment variation in the ephippia of Daphniapulicaria. Freshw. Biol. 48, 1971–1982 (2003).
Bentov, S., Abehsera, S. & Sagi, A. The mineralized exoskeletons of crustaceans. in (Cohen, E., Moussian, B. eds) Extracellular Composite Matrices in Arthropods 137–163. (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-40740-1.
Weiner, S., Levi-Kalisman, Y., Raz, S. & Addadi, L. Biologically formed amorphous calcium carbonate. Connect. Tissue Res. 44, 214–218 (2003).
Hessen, D. A. G. O. & Rukke, N. A. The costs of moulting in Daphnia; mineral regulation of carbon budgets. Freshw. Biol. 1, 169–178 (2000).
Waervagen, S. B., Rukke, N. A. & Hessen, D. O. Calcium content of crustacean zooplankton and its potential role in species distribution. Freshw. Biol. 47, 1866–1878 (2002).
Nikolov, S. et al. Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: The example of lobster cuticle. Adv. Mater. 22, 519–526 (2010).
Bentov, S., Aflalo, E. D., Tynyakov, J., Glazer, L. & Sagi, A. Calcium phosphate mineralization is widely applied in crustacean mandibles. Sci. Rep. 6, 1–10 (2016).
Raabe, D., Al-Sawalmih, A., Yi, S. B. & Fabritius, H. Preferred crystallographic texture of α-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomater. 3, 882–895 (2007).
Raabe, D. et al. Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J. Cryst. Growth 283, 1–7 (2005).
Kruppert, S. et al. Biomechanical properties of predator-induced body armour in the freshwater crustacean Daphnia. Sci. Rep. 7, 1–13 (2017).
Azan, S. S. E. & Arnott, S. E. The impact of calcium decline on population growth rates of crustacean zooplankton in Canadian Shield lakes. Limnol. Oceanogr. 602–616 (2017). https://doi.org/10.1002/lno.10653.
Riessen, H. P. et al. Changes in water chemistry can disable plankton prey defenses. Proc. Natl. Acad. Sci. U. S. A. 109, 15377–15382 (2012).
Tan, Q.-G. & Wang, W.-X. The regulation of calcium in Daphniamagna reared in different calcium environments. Limnol. Oceanogr. 54, 746–756 (2009).
Elendt, B. P. Selenium deficiency in Crustacea. Protoplasma 154, 25–33 (1990).
Team, R. C. R: A Language and Environment for Statistical Computing. (2008).
Ramoji, A. et al. Raman Spectroscopy follows time-dependent changes in T lymphocytes isolated from spleen of endotoxemic mice. ImmunoHorizons 3, 45–60 (2019).
Chaturvedi, D. et al. Different phases of breast cancer cells: Raman study of immortalized, transformed, and invasive cells. Biosensors 6 (2016).
Laforsch & Tollrian. A new preparation technique of daphnids for Scanning Electron Microscopy using hexamethyldisilazane. rch. Hydrobiol. 149, 587–596 (2000).
Rohlf, F. J. & Sokal, R. R. Statistical tables. (1995).
Source: Ecology - nature.com