in

Uncovering the chemistry behind inducible morphological defences in the crustacean Daphnia magna via micro-Raman spectroscopy

  • 1.

    Currey, J. D. The failure of exoskeletons and endoskeletons. J. Morphol. 123, 1–16 (1967).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Taylor, D. & Dirks, J.-H. Shape optimization in exoskeletons and endoskeletons: a biomechanics analysis. J. R. Soc. Interface 9, 3480–3489 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Boßelmann, F., Romano, P., Fabritius, H., Raabe, D. & Epple, M. The composition of the exoskeleton of two crustacea: The American lobster Homarusamericanus and the edible crab Cancerpagurus. Thermochim. Acta 463, 65–68 (2007).

    Article  CAS  Google Scholar 

  • 4.

    Tynyakov, J. et al. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties. J. Exp. Biol. 218, 3487–3498 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Sugawara, A. et al. Self-organization of oriented calcium carbonate/polymer composites: Effects of a matrix peptide isolated from the exoskeleton of a crayfish. Angew. Chemie – Int. Ed. 45, 2876–2879 (2006).

    CAS  Article  Google Scholar 

  • 6.

    Inoue, H., Ozaki, N. & Nagasawa, H. Purification and structural determination of a phosphorylated peptide with anti-calcification and chitin-binding activities in the exoskeleton of the crayfish, Procambarus clarkii. Biosci. Biotechnol. Biochem. 65, 1840–1848 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Taylor, J. R. A., Hebrank, J. & Kier, W. M. Mechanical properties of the rigid and hydrostatic skeletons of molting blue crabs, Callinectes sapidus Rathbun. J. Exp. Biol. 210, 4272–4278 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Chen, P. Y., Lin, A. Y. M., McKittrick, J. & Meyers, M. A. Structure and mechanical properties of crab exoskeletons. Acta Biomater. 4, 587–596 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Cribb, B. W. et al. Structure, composition and properties of naturally occuring non-calcified crustacean cuticle. Arthropod Struct. Dev. 38, 173–178 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Bentov, S., Weil, S., Glazer, L., Sagi, A. & Berman, A. Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. J. Struct. Biol. 171, 207–215 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Halcrow, K. Cell and tissue the fine structure of the carapace integument of Daphniamagna Straus (Crustacea Branchiopoda). Cell Tissue Res. 276, 267–276 (1976).

    Google Scholar 

  • 12.

    Benzie, J. A. H. Cladocera: The Genus Daphnia (Including Daphniopsis) Benzie Teil 1. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World Vol. 21 (2005).

  • 13.

    Harvell, C. D. & Tollrian, R. The Ecology and Evolution of Inducible Defenses Vol. 65. (Princeton University Press, Princeton, 1999).

  • 14.

    Laforsch, C., Beccara, L. & Tollrian, R. Inducible defenses The relevance of chemical alarm cues in Daphnia. Limnol. Oceanogr. 51, 1466–1472 (2006).

    ADS  Article  Google Scholar 

  • 15.

    Tollrian, R. Predator-induced morphological defenses: Costs, life history shifts, and maternal effects in Daphniapulex. Ecology 76, 1691–1705 (1995).

    Article  Google Scholar 

  • 16.

    Van Der Stap, I., Vos, M. & Mooij, W. M. Inducible defenses and rotifer food chain dynamics. Hydrobiologia 593, 103–110 (2007).

    Article  CAS  Google Scholar 

  • 17.

    Altwegg, R., Marchinko, K. B., Duquette, S. L. & Anholt, B. R. Dynamics of an inducible defence in the protist Euplotes. Arch. Hydrobiol. 160, 431–446 (2004).

    Article  Google Scholar 

  • 18.

    Frost, S. D. W. The immune system as an inducible defense. in The Ecology and Evolution of Inducible Defenses 104–126 (1999).

  • 19.

    Grant, J. W. G. W. G. & Bayly, I. A. E. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. 26, 201–218 (1981).

  • 20.

    Laforsch, C. & Tollrian, R. Inducible defenses in multipredator environments: Cyclomorphosis in Daphniacucullata. Ecology 85, 2302–2311 (2004).

    Article  Google Scholar 

  • 21.

    Ritschar, S., Rabus, M. & Laforsch, C. Predator-specific inducible morphological defenses of a water flea against two freshwater predators. J. Morphol. 281, 653–661 (2020).

    PubMed  Article  Google Scholar 

  • 22.

    Laforsch, C., Ngwa, W., Grill, W. & Tollrian, R. An acoustic microscopy technique reveals hidden morphological defenses in Daphnia. PNAS 101, 15911–15914 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 23.

    Rabus, M., Söllradl, T., Clausen-Schaumann, H. & Laforsch, C. Uncovering ultrastructural defences in Daphniamagna. PLoS ONE 8, e67856 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Otte, K. A., Fröhlich, T., Arnold, G. J. & Laforsch, C. Proteomic analysis of Daphniamagna hints at molecular pathways involved in defensive plastic responses. BMC Genomics 15, 306 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 25.

    Otte, K. A., Schrank, I., Fröhlich, T., Arnold, G. J. & Laforsch, C. Interclonal proteomic responses to predator exposure in Daphnia magna may depend on predator composition of habitats. Mol. Ecol. 24, 3901–3917 (2015).

  • 26.

    Krafft, C. et al. Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches. Angew. Chem. Int. Ed. 56, 4392–4430 (2017).

    CAS  Article  Google Scholar 

  • 27.

    Butler, H. J. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664–687 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Kuhar, N., Sil, S., Verma, T. & Umapathy, S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv. 8, 25888–25908 (2018).

    CAS  Article  Google Scholar 

  • 29.

    Talari, A. C. S., Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 50, 46–111 (2015).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Kruppert, S. et al. Push or Pull? The light-weight architecture of the Daphniapulex carapace is adapted to withstand tension, not compression. J. Morphol. 277, 1320–1328 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Gierlinger, N., Reisecker, C., Hild, S. & Gamsjaeger, S. Raman microscopy: Insights into chemistry and structure of biological materials. in Materials Design Inspired by Nature: Function Through Inner Architecture. 151–179 (2013). https://doi.org/10.1039/9781849737555-00151.

  • 32.

    Rabus, M., Waterkeyn, A., Van Pottelbergh, N., Brendonck, L. & Laforsch, C. Interclonal variation, effectiveness and long-term implications of Triops-induced morphological defences in Daphniamagna Strauss. J. Plankton Res. 34, 152–160 (2012).

    Article  Google Scholar 

  • 33.

    Rabus, M. & Laforsch, C. Growing large and bulky in the presence of the enemy. Funct. Ecol. 25, 1137–1143 (2011).

    Article  Google Scholar 

  • 34.

    Nikolov, S. et al. Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations. J. Mech. Behav. Biomed. Mater. 4, 129–145 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Al-Sawalmih, A., Li, C., Siegel, S., Fratzl, P. & Paris, O. On the stability of amorphous minerals in lobster cuticle. Adv. Mater. 21, 4011–4015 (2009).

    CAS  Article  Google Scholar 

  • 36.

    Luquet, G. Biomineralizations: Insights and prospects from crustaceans. Zookeys 176, 103–121 (2012).

    Article  Google Scholar 

  • 37.

    Becker, A., Ziegler, A. & Epple, M. The mineral phase in the cuticles of two species of crustacea consists of magnesium calcite, amorphous calcium carbonate and amorphous calcium phosphate. R. Soc. Chem. 1814–1820 (2005).

  • 38.

    Roer, R. & Dillaman, R. The structure and clacification of the crustacean cuticle. Am. Zool. 24, 893–909 (1984).

    CAS  Article  Google Scholar 

  • 39.

    Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Bots, P., Benning, L. G., Rodriguez-Blanco, J.-D., Roncal-Herrero, T. & Shaw, S. Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst. Growth Des. 12, 3806–3814 (2012).

    CAS  Article  Google Scholar 

  • 41.

    Addadi, L., Raz, S. & Weiner, S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15, 959–970 (2003).

    CAS  Article  Google Scholar 

  • 42.

    Kawasaki, T. et al. Crystalline calcium phosphate and magnetic mineral content of Daphnia resting eggs. Zool. Sci. 21, 63–67 (2004).

    CAS  Article  Google Scholar 

  • 43.

    Gerrish, G. A. & Cáceres, C. E. Genetic versus environmental influence on pigment variation in the ephippia of Daphniapulicaria. Freshw. Biol. 48, 1971–1982 (2003).

    Article  Google Scholar 

  • 44.

    Bentov, S., Abehsera, S. & Sagi, A. The mineralized exoskeletons of crustaceans. in (Cohen, E., Moussian, B. eds) Extracellular Composite Matrices in Arthropods 137–163. (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-40740-1.

  • 45.

    Weiner, S., Levi-Kalisman, Y., Raz, S. & Addadi, L. Biologically formed amorphous calcium carbonate. Connect. Tissue Res. 44, 214–218 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Hessen, D. A. G. O. & Rukke, N. A. The costs of moulting in Daphnia; mineral regulation of carbon budgets. Freshw. Biol. 1, 169–178 (2000).

    Article  Google Scholar 

  • 47.

    Waervagen, S. B., Rukke, N. A. & Hessen, D. O. Calcium content of crustacean zooplankton and its potential role in species distribution. Freshw. Biol. 47, 1866–1878 (2002).

    CAS  Article  Google Scholar 

  • 48.

    Nikolov, S. et al. Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: The example of lobster cuticle. Adv. Mater. 22, 519–526 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Bentov, S., Aflalo, E. D., Tynyakov, J., Glazer, L. & Sagi, A. Calcium phosphate mineralization is widely applied in crustacean mandibles. Sci. Rep. 6, 1–10 (2016).

    Article  CAS  Google Scholar 

  • 50.

    Raabe, D., Al-Sawalmih, A., Yi, S. B. & Fabritius, H. Preferred crystallographic texture of α-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomater. 3, 882–895 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Raabe, D. et al. Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J. Cryst. Growth 283, 1–7 (2005).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Kruppert, S. et al. Biomechanical properties of predator-induced body armour in the freshwater crustacean Daphnia. Sci. Rep. 7, 1–13 (2017).

    Article  Google Scholar 

  • 53.

    Azan, S. S. E. & Arnott, S. E. The impact of calcium decline on population growth rates of crustacean zooplankton in Canadian Shield lakes. Limnol. Oceanogr. 602–616 (2017). https://doi.org/10.1002/lno.10653.

  • 54.

    Riessen, H. P. et al. Changes in water chemistry can disable plankton prey defenses. Proc. Natl. Acad. Sci. U. S. A. 109, 15377–15382 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Tan, Q.-G. & Wang, W.-X. The regulation of calcium in Daphniamagna reared in different calcium environments. Limnol. Oceanogr. 54, 746–756 (2009).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Elendt, B. P. Selenium deficiency in Crustacea. Protoplasma 154, 25–33 (1990).

    CAS  Article  Google Scholar 

  • 57.

    Team, R. C. R: A Language and Environment for Statistical Computing. (2008).

  • 58.

    Ramoji, A. et al. Raman Spectroscopy follows time-dependent changes in T lymphocytes isolated from spleen of endotoxemic mice. ImmunoHorizons 3, 45–60 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Chaturvedi, D. et al. Different phases of breast cancer cells: Raman study of immortalized, transformed, and invasive cells. Biosensors 6 (2016).

  • 60.

    Laforsch & Tollrian. A new preparation technique of daphnids for Scanning Electron Microscopy using hexamethyldisilazane. rch. Hydrobiol. 149, 587–596 (2000).

  • 61.

    Rohlf, F. J. & Sokal, R. R. Statistical tables. (1995).


  • Source: Ecology - nature.com

    A cross-species interaction with a symbiotic commensal enables cell-density-dependent growth and in vivo virulence of an oral pathogen

    Root-associated entomopathogenic fungi manipulate host plants to attract herbivorous insects