in

Reanalysis datasets outperform other gridded climate products in vegetation change analysis in peripheral conservation areas of Central Asia

  • 1.

    Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The Ecological Performance of Protected Areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).

    Article  Google Scholar 

  • 2.

    Williams, S. E. et al. Research priorities for natural ecosystems in a changing global climate. Glob. Change Biol. 26, 410–416 (2020).

    ADS  Article  Google Scholar 

  • 3.

    Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    IUCN & UNEP. The World Database on Protected Areas (WDPA). www.protectedplanet.net. (UNEP-WCMC, 2018).

  • 5.

    Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A. & Ziese, M. GPCC Full Data Monthly Product Version 2018 at 0.25°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data. 10.5676/DWD_GPCC/FD_M_V2018_025; ftp://ftp.dwd.de/pub/data/gpcc/html/fulldata-monthly_v2018_doi_download.html; accessed on 26 March 2019. (2018).

  • 6.

    Schneider, U., Finger, P., Meyer-Christoffer, A., Ziese, M. & Becker, A. Global Precipitation Analysis Products of the GPCC. Deutscher Wetterdienst, Abt. Hydrometeorologie, Weltzentrum für Niederschlagsklimatologie (WZN) 17 (2018).

  • 7.

    Hofstra, N., Haylock, M., New, M. & Jones, P. D. Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J. Geophys. Res. 114, D21101 (2009).

    ADS  Article  Google Scholar 

  • 8.

    Prein, A. F. & Gobiet, A. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis: UNCERTAINTY IN EUROPEAN PRECIPITATION. Int. J. Climatol. 37, 305–327 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Zandler, H., Haag, I. & Samimi, C. Evaluation needs and temporal performance differences of gridded precipitation products in peripheral mountain regions. Sci. Rep. 9, 15118 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 10.

    Liu, M. et al. Evaluation of high-resolution satellite rainfall products using rain gauge data over complex terrain in southwest China. Theor. Appl. Climatol. 119, 203–219 (2015).

    ADS  Article  Google Scholar 

  • 11.

    Fu, Y. et al. Assessment of multiple precipitation products over major river basins of China. Theor. Appl. Climatol. 123, 11–22 (2016).

    ADS  Article  Google Scholar 

  • 12.

    Hu, Z., Hu, Q., Zhang, C., Chen, X. & Li, Q. Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in central Asia: Central Asia Precipitation. J. Geophys. Res. Atmos. 121, 5648–5663 (2016).

    Article  Google Scholar 

  • 13.

    Hu, Z. et al. Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. Int. J. Climatol. 38, 3475–3493 (2018).

    Article  Google Scholar 

  • 14.

    Beck, H. E. et al. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 21, 6201–6217 (2017).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Iwasaki, H. NDVI prediction over Mongolian grassland using GSMaP precipitation data and JRA-25/JCDAS temperature data. J. Arid Environ. 73, 557–562 (2009).

    ADS  Article  Google Scholar 

  • 16.

    Gessner, U. et al. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Glob. Planet. Change 110, 74–87 (2013).

    ADS  Article  Google Scholar 

  • 17.

    Los, S. O. Testing gridded land precipitation data and precipitation and runoff reanalyses (1982–2010) between 45° S and 45° N with normalised difference vegetation index data. Hydrol. Earth Syst. Sci. 19, 1713–1725 (2015).

    ADS  Article  Google Scholar 

  • 18.

    Papagiannopoulou, C. et al. Vegetation anomalies caused by antecedent precipitation in most of the world. Environ. Res. Lett. 12, 074016 (2017).

    ADS  Article  Google Scholar 

  • 19.

    Chen, Z., Wang, W. & Fu, J. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Sci. Rep. 10, 830 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Eckert, S., Hüsler, F., Liniger, H. & Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ. 113, 16–28 (2015).

    ADS  Article  Google Scholar 

  • 21.

    Otto, M., Höpfner, C., Curio, J., Maussion, F. & Scherer, D. Assessing vegetation response to precipitation in northwest Morocco during the last decade: an application of MODIS NDVI and high resolution reanalysis data. Theor. Appl. Climatol. 123, 23–41 (2016).

    ADS  Article  Google Scholar 

  • 22.

    Formica, A. F., Burnside, R. J. & Dolman, P. M. Rainfall validates MODIS-derived NDVI as an index of spatio-temporal variation in green biomass across non-montane semi-arid and arid Central Asia. J. Arid Environ. 142, 11–21 (2017).

    ADS  Article  Google Scholar 

  • 23.

    Wang, X., Wu, C., Peng, D., Gonsamo, A. & Liu, Z. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers. Agric. For. Meteorol. 256–257, 61–74 (2018).

    ADS  Article  Google Scholar 

  • 24.

    Verbyla, D. & Kurkowski, T. A. NDVI–Climate relationships in high-latitude mountains of Alaska and Yukon Territory. Arct. Antarct. Alp. Res. 51, 397–411 (2019).

    Article  Google Scholar 

  • 25.

    Breckle, S.-W. Flora and vegetation of Afghanistan. badr 1, 155–194 (2007).

    Article  Google Scholar 

  • 26.

    Bedunah, D. J., Shank, C. C. & Alavi, M. A. Rangelands of Band-e-Amir National Park and Ajar Provisional Wildlife Reserve, Afghanistan. Rangelands 32, 41–52 (2010).

    Article  Google Scholar 

  • 27.

    Pohl, E., Knoche, M., Gloaguen, R., Andermann, C. & Krause, P. Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains. Earth Surf. Dyn. 3, 333–362 (2015).

    ADS  Article  Google Scholar 

  • 28

    Soelberg, J. & Jäger, A. K. Comparative ethnobotany of the Wakhi agropastoralist and the Kyrgyz nomads of Afghanistan. J. Ethnobiol. Ethnomed. https://doi.org/10.1186/s13002-015-0063-x (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Didan, K. MOD13Q1 MODIS/terra vegetation indices 16-day L3 global 250m SIN Grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).

  • 30.

    Dinku, T. et al. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 144, 292–312 (2018).

    ADS  Article  Google Scholar 

  • 31.

    Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).

    ADS  Article  Google Scholar 

  • 32.

    Hall, D. K. & Riggs, G. A. MOD10A1 MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 6. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MOD10A1.006. Accessed on 25 March 2020. (2016).

  • 33.

    Wang, K. et al. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau. Int. J. Digit. Earth 8, 58–75 (2013).

    Article  Google Scholar 

  • 34.

    Chen, X., An, S., Inouye, D. W. & Schwartz, M. D. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob. Change Biol. 21, 3635–3646 (2015).

    ADS  Article  Google Scholar 

  • 35.

    Asam, S. et al. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the Alps—an earth observation-based analysis. Remote Sens. 10, 1757 (2018).

    ADS  Article  Google Scholar 

  • 36.

    Funk, C. C. et al. CHIRPS-2.0. A quasi-global precipitation time series for drought monitoring: U.S. Geological Survey Data Series 832, 4 p. http://pubs.usgs.gov/ds/832/. Accessed on 25 March 2020. (2014).

  • 37.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  • 38.

    Copernicus Climate Change Service. C3S ERA5-Land reanalysis . Copernicus Climate Change Service, https://cds.climate.copernicus.eu/cdsapp#!/home. Accessed on 25 March 2020. (2019).

  • 39.

    Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A. & Ziese, M. GPCC Monitoring Product Version 6: Near Real-Time Monthly Land-Surface Precipitation from Rain-Gauges based on SYNOP and CLIMAT data. 10.5676/DWD_GPCC/MP_M_V6_100; ftp://ftp.dwd.de/pub/data/gpcc/monitoring_v6/. Accessed on 25 March 2020. (2018).

  • 40.

    Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J. & Jackson, T. GPM IMERG Final Precipitation L3 1 month 0.1 degree x 0.1 degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC),https://doi.org/10.5067/GPM/IMERG/3B-MONTH/06. Accessed on 25 March 2020. (2019).

  • 41.

    Global Modeling and Assimilation Office. MERRA-2 tavgM_2d_flx_Nx: 2d,Monthly mean,Time-Averaged,Single-Level,Assimilation,Surface Flux Diagnostics V5.12.4; https://doi.org/10.5067/0JRLVL8YV2Y4. Accessed on 25 March 2020. (Goddard Earth Sciences Data and Information Services Center (GES DISC), 2015).

  • 42.

    Unger-Shayesteh, K. et al. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Glob. Planet. Change 110, 4–25 (2013).

    ADS  Article  Google Scholar 

  • 43.

    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M, Accessed on 25 March 2020. (2009).

  • 44.

    Jpl, N. A. S. A. NASA shuttle radar topography mission global 1 arc second data set. NASA EOSDIS Land Process. DAAC. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (2013).

  • 45.

    QGIS Development Team. GIS Geographic Information System. Version 3.12 București. Open Source Geospatial Foundation Project. http://qgis.osgeo.org/. (2020).

  • 46.

    Smallwood, P. D. & Shank, C. C. From buffer zone to national park: Afghanistan’s Wakhan National Park. In Collateral Values Vol. 25 (eds Lookingbill, T. R. & Smallwood, P. D.) 213–233 (Springer, Berlin, 2019).

    Google Scholar 

  • 47.

    Vanselow, K. A. The high-mountain pastures of the Eastern Pamirs (Tajikistan): an evaluation of the ecological basis and the pasture potential. (Erlangen, Nürnberg, Univ., Diss., 2011).

  • 48.

    Breckle, S. W. & Rafiqpoor, M. D. Field Guide Afghanistan—Flora and Vegetation. (Scientia Bonnensis, 2010).

  • 49.

    Moheb, Z. & Bradfield, D. Status of the common leopard in Afghanistan. ISSN 1027–2992. Cat News 61, (2014).

  • 50.

    Mohibbi, A. A. & Cochard, R. Residents’ resource uses and nature conservation in Band-e-Amir National Park, Afghanistan. Environ. Dev. 11, 141–161 (2014).

    Article  Google Scholar 

  • 51.

    Moqanaki, E. M. et al. Distribution and status of the Pallas’s cat in the south-west part of its range. ISSN 1027–2992. Cat News Special Issue 13, (2019).

  • 52.

    Gray, T. I. & Tapley, B. D. Vegetation health: Nature’s climate monitor. Adv. Space Res. 5, 371–377 (1985).

    ADS  Article  Google Scholar 

  • 53.

    Sun, J. & Qin, X. Precipitation and temperature regulate the seasonal changes of NDVI across the Tibetan Plateau. Environ. Earth Sci. 75, 291 (2016).

    Article  Google Scholar 

  • 54.

    Anyamba, A. & Tucker, C. J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid Environ. 63, 596–614 (2005).

    ADS  Article  Google Scholar 

  • 55.

    Quetin, G. R. & Swann, A. L. S. Empirically derived sensitivity of vegetation to climate across global gradients of temperature and precipitation. J. Clim. 30, 5835–5849 (2017).

    ADS  Article  Google Scholar 

  • 56

    Meroni, M., Fasbender, D., Rembold, F., Atzberger, C. & Klisch, A. Near real-time vegetation anomaly detection with MODIS NDVI: timeliness vs. accuracy and effect of anomaly computation options. Remote Sens. Environ. 221, 508–521 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Rita, A. et al. The impact of drought spells on forests depends on site conditions: the case of 2017 summer heat wave in southern Europe. Glob. Change Biol. 26, 851–863 (2020).

    ADS  Article  Google Scholar 

  • 58.

    Kandasamy, S., Baret, F., Verger, A., Neveux, P. & Weiss, M. A comparison of methods for smoothing and gap filling time series of remote sensing observations – application to MODIS LAI products. Biogeosciences 10, 4055–4071 (2013).

    ADS  Article  Google Scholar 

  • 59.

    Liu, R., Shang, R., Liu, Y. & Lu, X. Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory, protection of key point, noise resistance and curve stability. Remote Sens. Environ. 189, 164–179 (2017).

    ADS  Article  Google Scholar 

  • 60.

    Zandler, H., Brenning, A. & Samimi, C. Quantifying dwarf shrub biomass in an arid environment: comparing empirical methods in a high dimensional setting. Remote Sens. Environ. 158, 140–155 (2015).

    ADS  Article  Google Scholar 

  • 61.

    Hyndman, R. J. Discussion of ‘High-dimensional autocovariance matrices and optimal linear prediction’. Electron. J. Stat. 9, 792–796 (2015).

    MathSciNet  MATH  Article  Google Scholar 

  • 62.

    Propastin, P. A., Kappas, M. & Muratova, N. R. Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. J. Environ. Inf. 12, 75–87 (2008).

    Article  Google Scholar 

  • 63

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    ADS  Article  Google Scholar 

  • 64.

    Parker, W. S. Reanalyses and observations: what’s the difference?. Bull. Am. Meteorol. Soc. 97, 1565–1572 (2016).

    ADS  Article  Google Scholar 

  • 65.

    El Kenawy, A. M. & McCabe, M. F. A multi-decadal assessment of the performance of gauge- and model-based rainfall products over Saudi Arabia: climatology, anomalies and trends: RAINFALL PRODUCTS IN SAUDI ARABIA. Int. J. Climatol. 36, 656–674 (2016).

    Article  Google Scholar 

  • 66.

    Song, S. & Bai, J. Increasing winter precipitation over arid Central Asia under global warming. Atmosphere 7, 139 (2016).

    ADS  Article  Google Scholar 

  • 67.

    Ahmed, K., Shahid, S., Wang, X., Nawaz, N. & Najeebullah, K. Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water 11, 210 (2019).

    Article  Google Scholar 

  • 68.

    Anjum, M. N. et al. Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmos. Res. 205, 134–146 (2018).

    Article  Google Scholar 

  • 69.

    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Reichle, R. H. et al. Land surface precipitation in MERRA-2. J. Clim. 30, 1643–1664 (2017).

    ADS  Article  Google Scholar 

  • 71.

    Peng, S., Piao, S., Ciais, P., Fang, J. & Wang, X. Change in winter snow depth and its impacts on vegetation in China. Glob. Change Biol. https://doi.org/10.1111/j.1365-2486.2010.02210.x (2010).

    Article  Google Scholar 

  • 72.

    Qiu, B. et al. Satellite-observed solar-induced chlorophyll fluorescence reveals higher sensitivity of alpine ecosystems to snow cover on the Tibetan Plateau. Agric. For. Meteorol. 271, 126–134 (2019).

    ADS  Article  Google Scholar 

  • 73.

    Hall, D. K., Riggs, G. A., DiGirolamo, N. E. & Román, M. O. Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record. Hydrol. Earth Syst. Sci. 23, 5227–5241 (2019).

    ADS  Article  Google Scholar 

  • 74.

    Salomonson, V. V. & Appel, I. Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans. Geosci. Remote Sens. 44, 1747–1756 (2006).

    ADS  Article  Google Scholar 

  • 75.

    Riggs, G., Hall, D. & Román, M. O. VIIRS Snow Cover Algorithm Theoretical Basis Document (ATBD). 38 (2015).

  • 76

    Zhu, A.-X. Resampling Raster. In International Encyclopedia of Geography: People, the Earth, Environment and Technology (eds Richardson, D. et al.) 1–5 (Wiley, New York, 2017). https://doi.org/10.1002/9781118786352.wbieg0878.

    Google Scholar 

  • 77.

    Behnke, R. et al. Evaluation of downscaled, gridded climate data for the conterminous United States. Ecol. Appl. 26, 1338–1351 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 78.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH  Article  Google Scholar 

  • 79.

    Zandler, H. Wakhan Rangeland Assessment Report 2018. Unpublished report. (2018).

  • 80.

    Camberlin, P., Martiny, N., Philippon, N. & Richard, Y. Determinants of the interannual relationships between remote sensed photosynthetic activity and rainfall in tropical Africa. Remote Sens. Environ. 106, 199–216 (2007).

    ADS  Article  Google Scholar 

  • 81.

    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 110, 52–57 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 83.

    Peña, M. A., Brenning, A. & Sagredo, A. Constructing satellite-derived hyperspectral indices sensitive to canopy structure variables of a Cordilleran Cypress (Austrocedrus chilensis) forest. ISPRS J. Photogram. Remote Sens. 74, 1–10 (2012).

    Article  Google Scholar 

  • 84.

    Zandler, H., Brenning, A. & Samimi, C. Potential of space-borne hyperspectral data for biomass quantification in an arid environment: advantages and limitations. Remote Sens. 7, 4565–4580 (2015).

    ADS  Article  Google Scholar 

  • 85

    Efron, B. & Tibshirani, R. An Introduction to the Bootstrap (Chapman & Hall, London, 1993).

    Google Scholar 

  • 86.

    Banik, S. & Kibria, B. M. Confidence intervals for the population correlation coefficient ρ. Int. J. Stats. Med. Res. 5, 99–111 (2016).

    Article  Google Scholar 

  • 87.

    Mudelsee, M. Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Math. Geol. 35, 651–665 (2003).

    MATH  Article  Google Scholar 

  • 88.

    Abdi, A. M. et al. The El Niño – La Niña cycle and recent trends in supply and demand of net primary productivity in African drylands. Clim. Change 138, 111–125 (2016).

    ADS  Article  Google Scholar 

  • 89.

    Lima, E., Davies, P., Kaler, J., Lovatt, F. & Green, M. Variable selection for inferential models with relatively high-dimensional data: Between method heterogeneity and covariate stability as adjuncts to robust selection. Sci. Rep. 10, 8002 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Degenhardt, F., Seifert, S. & Szymczak, S. Evaluation of variable selection methods for random forests and omics data sets. Brief. Bioinform. 20, 492–503 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 91

    Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Soft. https://doi.org/10.18637/jss.v036.i11 (2010).

    Article  Google Scholar 

  • 92.

    Diesing, M. Deep-sea sediments of the global ocean. https://essd.copernicus.org/preprints/essd-2020-22/ (2020) 10.5194/essd-2020-22.

  • 93.

    R Core Team. R: A Language and Environment for Statistical Computing. Version 4.0.3. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020).

  • 94.

    Daham, A., Han, D., Rico-Ramirez, M. & Marsh, A. Analysis of NVDI variability in response to precipitation and air temperature in different regions of Iraq, using MODIS vegetation indices. Environ. Earth Sci. 77, 389 (2018).

    Article  Google Scholar 

  • 95.

    Chen, S., Gan, T. Y., Tan, X., Shao, D. & Zhu, J. Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China. Clim. Dyn. 53, 737–757 (2019).

    Article  Google Scholar 

  • 96

    Kath, J. et al. Not so robust: robusta coffee production is highly sensitive to temperature. Glob. Change Biol. https://doi.org/10.1111/gcb.15097 (2020).

    Article  Google Scholar 

  • 97.

    Mahto, S. S. & Mishra, V. Does ERA-5 outperform other reanalysis products for hydrologic applications in India?. J. Geophys. Res. Atmos. 124, 9423–9441 (2019).

    ADS  Article  Google Scholar 

  • 98.

    Royé, D., Íñiguez, C. & Tobías, A. Comparison of temperature–mortality associations using observed weather station and reanalysis data in 52 Spanish cities. Environ. Res. 183, 109237 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 99.

    Dee, D. P., Källén, E., Simmons, A. J. & Haimberger, L. Comments on “Reanalyses Suitable for Characterizing Long-Term Trends”. Bull. Am. Meteorol. Soc. 92, 65–70 (2011).

    ADS  Article  Google Scholar 

  • 100.

    Rasmussen, R. et al. How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 93, 811–829 (2012).

    ADS  Article  Google Scholar 

  • 101.

    Yuan, X., Li, L. & Chen, X. Increased grass NDVI under contrasting trends of precipitation change over North China during 1982–2011. Remote Sens. Lett. 6, 69–77 (2015).

    Article  Google Scholar 

  • 102.

    Wang, X., Ciais, P., Wang, Y. & Zhu, D. Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Glob. Change Biol. 24, 4709–4717 (2018).

    ADS  Article  Google Scholar 

  • 103

    Basheer, M. & Elagib, N. A. Performance of satellite-based and GPCC 7.0 rainfall products in an extremely data-scarce country in the Nile Basin. Atmos. Res. 215, 128–140 (2019).

    Article  Google Scholar 

  • 104.

    Piazzi, G. et al. Cross-country assessment of H-SAF snow products by sentinel-2 imagery validated against in-situ observations and webcam photography. Geosciences 9, 129 (2019).

    ADS  Article  Google Scholar 

  • 105.

    Lievens, H. et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 10, 4629 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 106.

    Sur, C., Park, S.-Y., Kim, T.-W. & Lee, J.-H. Remote sensing-based agricultural drought monitoring using hydrometeorological variables. KSCE J. Civ. Eng. 23, 5244–5256 (2019).

    Article  Google Scholar 

  • 107.

    Geruo, A., Velicogna, I., Zhao, M., Colliander, A. & Kimball, J. S. Satellite detection of varying seasonal water supply restrictions on grassland productivity in the Missouri basin, USA. Remote Sens. Environ. 239, 111623 (2020).

    ADS  Article  Google Scholar 

  • 108.

    Lu, X. et al. Correcting GPM IMERG precipitation data over the Tianshan Mountains in China. J. Hydrol. 575, 1239–1252 (2019).

    ADS  Article  Google Scholar 

  • 109.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 110.

    Bai, L., Shi, C., Li, L., Yang, Y. & Wu, J. Accuracy of CHIRPS satellite-rainfall products over Mainland China. Remote Sens. 10, 362 (2018).

    ADS  Article  Google Scholar 

  • 111.

    Berg, A. A., Famiglietti, J. S., Walker, J. P. & Houser, P. R. Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. J. Geophys. Res. 108, ACL2-1-ACL2-5 (2003).

    Google Scholar 

  • 112.

    Sahoo, A. K., Sheffield, J., Pan, M. & Wood, E. F. Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 159, 181–193 (2015).

    ADS  Article  Google Scholar 

  • 113.

    Zambrano, F., Wardlow, B., Tadesse, T., Lillo-Saavedra, M. & Lagos, O. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. Atmos. Res. 186, 26–42 (2017).

    Article  Google Scholar 

  • 114.

    Dörre, A. Local knowledge-based water management and irrigation in the western pamirs. Int. J. EI 1, 254–266 (2018).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Root-associated entomopathogenic fungi manipulate host plants to attract herbivorous insects

    Aerosols from pollution, desert storms, and forest fires may intensify thunderstorms