in

Empirical support for the biogeochemical niche hypothesis in forest trees

  • 1.

    Tracy, C. R. & Christian, K. A. Ecological relations among space, time, and thermal niche axes. Ecology 67, 609–615 (1986).

    Article  Google Scholar 

  • 2.

    Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83, 2017–2036 (2002).

    Article  Google Scholar 

  • 4.

    Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).

    Article  Google Scholar 

  • 5.

    Wright, J. W., Davies, K. F., Lau, J. A., McCall, A. C. & McKay, J. K. Experimental verification of ecological niche modelling in a heterogeneous environment. Ecology 87, 2433–2439 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).

    Article  Google Scholar 

  • 8.

    Herrel, A., Spithoven, L., Van Damme, V. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: testing the divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).

    Article  Google Scholar 

  • 9.

    Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Kraft, N., Valencia, R. & Ackerly, D. D. Functional traits and niche based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Peñuelas, J., Sardans, J., Ogaya, R. & Estiarte, M. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Pol. J. Ecol. 56, 613–622 (2008).

    Google Scholar 

  • 12.

    Peñuelas, J. et al. Faster returns on “leaf economics” and different biogeochemical niche in invasive compared with native plant species. Glob. Change Biol. 16, 2171–2185 (2010).

    Article  Google Scholar 

  • 13.

    Peñuelas, J. et al. The bioelements, the elementome and the “biogeochemical niche”. Ecology 100, e02652 (2019).

    PubMed  Article  Google Scholar 

  • 14.

    Sardans, J. et al. Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Persp. Plant Ecol. Evol. Syst. 18, 52–69 (2016).

    Article  Google Scholar 

  • 15.

    Sardans, J. et al. Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Glob. Ecol. Biogeogr. 24, 240–255 (2015).

    Article  Google Scholar 

  • 16.

    Urbina, I. et al. Shifts in the elemental composition of plants during a very severe drought. Environ. Exp. Bot. 111, 63–73 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Urbina, I. et al. Plant community composition affects the species biogeochemical niche. Ecosphere 8, e01801 (2017).

    Article  Google Scholar 

  • 18.

    White, P. J. et al. Testing distinctness of shoot ionomes of angiosperm families using the Rothamsted Park grass continuous hay experiment. N. Phytol. 196, 101–109 (2012).

    CAS  Article  Google Scholar 

  • 19.

    Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).

    PubMed  Article  Google Scholar 

  • 20.

    Sun, L. K. et al. Leaf elemental stoichiometry of Tamarix Lour. Species in relation to geographic, climatic, soil, and genetic components in China. Ecol. Eng. 106, 448–457 (2017).

    Article  Google Scholar 

  • 21.

    Neugebauer, K. et al. Variation in the angiosperm ionome. Physiol. Plant. 163, 306–322 (2018).

    CAS  Article  Google Scholar 

  • 22.

    Gillman, L. N., Keeling, D. J., Gardner, R. C. & Wright, S. D. Faster evolution of highly conserved in tropical plants. J. Evol. Biol. 23, 1327–1330 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Puurtinen, M. et al. Temperature-dependent mutational robustness can explain faster molecular evolution at warm temperatires, affecting speciation rate and global patterns of species diversity. Ecography 39, 1025–1033 (2016).

    Article  Google Scholar 

  • 24.

    Kellner, A., Ritz, C. M., Schlittenhaedt, P. & Hellwig, F. H. Genetic differentiation in the genus Lithops L. (Ruschoideae, Aizoaceae) reveals a high level of convergent evolution and reflects geographic distribution. Plant Biol. 13, 368–380 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Jwa, N. S. & Hwang, B. K. Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants. Front. Plant Sci. 8, 1687 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Molina-Montenegro, M. A. et al. Is the success of plant invasions the result of rapid adaptive evolution in seed traits? Evidence from a latitudinal rainfall gradient. Front. Plant Sci. 9, 208 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Anacker, B. L. & Strauss, S. Y. Ecological similarity is related to phylogenetic distance between species in a cross-niche field transplant experiment. Ecology 97, 1807–1818 (2016).

    PubMed  Article  Google Scholar 

  • 28.

    Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11106 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).

    Article  Google Scholar 

  • 30.

    Kerkhoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Plantallometry, stoichiometry and the temperature-dependence of primary productivity. Glob. Ecol. Biogeogr. 14, 585–598 (2005).

    Article  Google Scholar 

  • 31.

    Yuan, Z. Y. & Chen, H. Y. H. Global trends in senesced-leaf nitrogen and phosphorus. Glob. Ecol. Biogeogr. 18, 532–542 (2009).

    Article  Google Scholar 

  • 32.

    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    McGroddy, M. E., Daufresne, T. & Hedin, L. O. Scaling of C/N/P stoichiometry in forest worldwide: implications of terrestrial Redfield-type ratios. Ecology 85, 2390–2401 (2004).

    Article  Google Scholar 

  • 34.

    Townsend, A. R., Cleveland, C. C., Asner, G. P. & Bustamante, M. M. C. Controls over foliar N:P ratios in tropical rainforest. Ecology 88, 107–118 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Lovelock, C. E., Feller, I. C., Ball, M. C., Ellis, J. & Sorell, B. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecol. Lett. 10, 1154–1163 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Marschner, H. Mineral Nutrition of Higher Plants (Academic Press, 1995).

  • 37.

    Zhang, Y. et al. Log-term trends in total inorganic nitrogen and sulfur deposition in US from 1990 to 2010. Atmos. Chem. Phys. 18, 9091–9106 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Horn, K. J. et al. Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. PLoS ONE 14, e0212984 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Papanikolaou, N., Britton, A. J., Helliwell, R. C. & Johnson, D. Nitrogen deposition, vegetation burning and climate warming act independently on microbial community structure and enzyme activity associated with decomposing litter in low-alpine heath. Glob. Change Biol. 16, 3120–3132 (2010).

    Google Scholar 

  • 40.

    Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. N. Phytol. 193, 696–704 (2012).

    CAS  Article  Google Scholar 

  • 41.

    Sardans, J. et al. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorus across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth. Funct. Ecol. 30, 676–689 (2016).

    Article  Google Scholar 

  • 42.

    Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 43.

    Penuelas, J. et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Commun. Biol. 3, 125 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Ahmad, N. & Mermut, A. Vertisols and Technologies for their Development 1st edn, Vol. 24 (Elsevier, 1996).

  • 45.

    Nishiue, A., Nanzyo, M., Kanno, H. & Takahashi, T. Properties and classification of volcanic ash soils around Lake Kuwanuma on the eastern footslope of Mt. Funagata in Miyagi prefecture, northeastern Japan. Soil Sci. Plant Nutr. 60, 848–862 (2014).

    CAS  Article  Google Scholar 

  • 46.

    De la Riva, E. G. et al. Biogeochemical and ecomorphological niche segregation of Mediterranean woody species along a local gradient. Fron. Plant Sci. 8, 1242 (2017).

    Article  Google Scholar 

  • 47.

    Yu, Q. et al. Stoichiometry homeostasis of vascular plants in the inner Mongolia grassland. Oecologia 166, 1–10 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Sardans, J., Albert Rivas-Ubach, A. & Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review. Biogeochemistry 111, 1–39 (2012).

    Article  Google Scholar 

  • 49.

    Gracia, C., Burriel, J. A., Ibàñez, J. J., Mata, T. & Vayreda, J. Inventari ecològic i forestal de Catalunya: regió forestal V (CREAF, 2004).

  • 50.

    Fick, A. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  • 51.

    Lang, R. Verwitterung und Bodenbildung als Einfuehrung in die Bodenkunde (Schweizerbart Science Publishers, 1920).

  • 52.

    Köppen, W. Klassification der Klimate nach Tempertur, Niederschlag and Jahreslauf. Petermanns Geog. Mitt. 64, 243–248 (1918).

    Google Scholar 

  • 53.

    De Martonne, E. Nouvelle carte mondiale de l’indece d’aridité. Ann. Géogr. 51, 242–250 (1942).

    Google Scholar 

  • 54.

    Emberger, L. La vegetation de la región Mèditerranéenne, essai d’une classification des groupements vegetaux. Rev. Gén. Bot. 42, 641–662, 705–721 (1930).

  • 55.

    Vorösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    PubMed  Article  CAS  Google Scholar 

  • 56.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011).

  • 57.

    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies, and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    Article  Google Scholar 

  • 58.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

  • 59.

    Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  • 60.

    Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).

    PubMed  Article  Google Scholar 

  • 61.

    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).

    Article  Google Scholar 

  • 62.

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  • 64.

    Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4, 754–759 (2013).

    Article  Google Scholar 

  • 65.

    Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 2 (2010).


  • Source: Ecology - nature.com

    Aerosols from pollution, desert storms, and forest fires may intensify thunderstorms

    Portable device can quickly detect plant stress