in

A new hypothesis for the origin of Amazonian Dark Earths

  • 1.

    Sombroek, W. G. Amazon Soils. A Reconnaissance of the Soils of the Brazilian Amazon Region 292 (Wageningen, Netherlands, 1966).

  • 2.

    Palace, M. W. et al. Ancient Amazonian populations left lasting impacts on forest structure. Ecosphere 8, e02035 (2017).

    Article  Google Scholar 

  • 3.

    Lehmann, J. Amazonian Dark Earths: Origin Properties Management (Kluwer Academic Publishers, Netherlands, 2003).

  • 4.

    Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2012).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Macedo, R. S., Teixeira, W. G., Corrêa, M. M., Martins, G. C. & Vidal-Torrado, P. Pedogenetic processes in anthrosols with pretic horizon (Amazonian Dark Earth) in Central Amazon, Brazil. PLoS ONE 12, e0178038 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 6.

    Barbosa, J. Z. et al. Elemental signatures of an Amazonian Dark Earth as result of its formation process. Geoderma 361, 114085 (2020).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Quesada, C. A. et al. Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil 6, 53–88 (2020).

    CAS  Article  Google Scholar 

  • 8.

    Grau, O. et al. Nutrient-cycling mechanisms other than the direct absorption from soil may control forest structure and dynamics in poor Amazonian soils. Sci. Rep. 7, 45017 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Silva, L. C. R. & Lambers, H. Soil-plant-atmosphere interactions: structure, function, and predictive scaling for climate change mitigation. Plant Soil 1–23 https://doi.org/10.1007/s11104-020-04427-1 (2020).

  • 10.

    Haridasan, M. Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz. J. Plant Physiol. 20, 183–195 (2008).

    Article  Google Scholar 

  • 11.

    Morello, T. F. et al. Fertilizer adoption by smallholders in the Brazilian Amazon: Farm-level evidence. Ecol. Econ. 144, 278–291 (2018).

    Article  Google Scholar 

  • 12.

    Lombardo, U. et al. Early Holocene crop cultivation and landscape modification in Amazonia. Nature 581, 190–193 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Capriles, J. M. et al. Persistent early to middle Holocene tropical foraging in southwestern Amazonia. Sci. Adv. 5, eaav5449 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Bush, M. B. et al. A 6900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev. 141, 52–64 (2016).

    ADS  Article  Google Scholar 

  • 15.

    Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Kern, D. C. et al. Terras pretas: approaches to formation processes in a new paradigm. Geoarchaeology 32, 694–706 (2017).

    Article  Google Scholar 

  • 17.

    McMichael, C. H. et al. Predicting pre-Columbian anthropogenic soils in Amazonia. Proc. R. Soc. B Biol. Sci. 281, 20132475 (2014).

    CAS  Article  Google Scholar 

  • 18.

    Schmidt, M. J. et al. Dark earths and the human built landscape in Amazonia: a widespread pattern of anthrosol formation. J. Archaeol. Sci. 42, 152–165 (2014).

    Article  Google Scholar 

  • 19.

    Birk, J. J., Teixeira, W. G., Neves, E. G. & Glaser, B. Faeces deposition on Amazonian Anthrosols as assessed from 5β-stanols. J. Archaeol. Sci. 38, 1209–1220 (2011).

    Article  Google Scholar 

  • 20.

    Glaser, B. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 187–196 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    El-Naggar, A. et al. Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337, 536–554 (2019).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Cunha, T. J. F. et al. Soil organic matter and fertility of anthropogenic dark earths (Terra Preta de Índio) in the Brazilian Amazon basin. Rev. Bras. Cienc. do Solo 33, 85–93 (2009).

    CAS  Article  Google Scholar 

  • 23.

    Lutfalla, S. et al. Pyrogenic carbon lacks long-term persistence in temperate arable soils. Front. Earth Sci. 5, 96 (2017).

    ADS  Article  Google Scholar 

  • 24.

    Chadwick, K. D. & Asner, G. P. Landscape evolution and nutrient rejuvenation reflected in Amazon forest canopy chemistry. Ecol. Lett. 21, 978–988 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Vitousek, P. M. Nutrient Cycling and Limitation: Hawai’i as a Model System. Ecology Vol. 30 (Princeton University Press, 2004).

  • 27.

    Silva, L. C. R. et al. Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373, 829–842 (2013).

    CAS  Article  Google Scholar 

  • 28.

    Alho, C. F. B. V. et al. Spatial variation of carbon and nutrients stocks in Amazonian Dark Earth. Geoderma 337, 322–332 (2019).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Bomfim, B., Silva, L. C. R., Doane, T. A. & Horwath, W. R. Interactive effects of land-use change and topography on asymbiotic nitrogen fixation in the Brazilian Atlantic Forest. Biogeochemistry 142, 137–153 (2019).

    CAS  Article  Google Scholar 

  • 30.

    Hendrixson, H. A., Sterner, R. W. & Kay, A. D. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish. Biol. 70, 121–140 (2007).

    Article  Google Scholar 

  • 31.

    Nishimuta, M. et al. Moisture and mineral content of human feces–high fecal moisture is associated with increased sodium and decreased potassium content. J. Nutr. Sci. Vitaminol. 52, 121–126 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Rossetti, D. F. et al. Unfolding long-term late Pleistocene-Holocene disturbances of forest communities in the southwestern Amazonian lowlands. Ecosphere 9, e02457 (2018).

    Article  Google Scholar 

  • 33.

    Carson, J. F. et al. Pre-Columbian land use in the ring-ditch region of the Bolivian Amazon. Holocene 25, 1285–1300 (2015).

    ADS  Article  Google Scholar 

  • 34.

    Shepard, G. H. et al. in Oxford Research Encyclopedia of Environmental Science (Hazlitt, R. ed.) (Oxford, 2020).

  • 35.

    Arroyo-Kalin, M. Slash-burn-and-churn: Landscape history and crop cultivation in pre-Columbian Amazonia. Quat. Int. 249, 4–18 (2012).

    Article  Google Scholar 

  • 36.

    Brugger, S. O. et al. Long-term man-environment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics. Quat. Sci. Rev. 132, 114–128 (2016).

    ADS  Article  Google Scholar 

  • 37.

    Maezumi, S. Y. et al. New insights from pre-Columbian land use and fire management in Amazonian dark earth forests. Front. Ecol. Evol. 6, 111 (2018).

    Article  Google Scholar 

  • 38.

    Zani, H., Rossetti, D. F., Cohen, M. L. C., Pessenda, L. C. R. & Cremon, E. H. Influence of landscape evolution on the distribution of floristic patterns in northern Amazonia revealed by δ13C data. J. Quat. Sci. 27, 854–864 (2012).

    Article  Google Scholar 

  • 39.

    Lombardo, U. et al. Holocene land cover change in south-western Amazonia inferred from paleoflood archives. Glob. Planet. Change 174, 105–114 (2019).

    ADS  Article  Google Scholar 

  • 40.

    Ward, B. M. et al. Reconstruction of Holocene coupling between the South America Monsoon System and local moisture variability from speleothem δ18O and 87Sr/86Sr records. Quat. Sci. Rev. 210, 51–63 (2019).

    ADS  Article  Google Scholar 

  • 41.

    Wortham, B. E. et al. Assessing response of local moisture conditions in central Brazil to variability in regional monsoon intensity using speleothem 87Sr/ 86Sr values. Earth Planet. Sci. Lett. 463, 310–322 (2017).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Silva, L. C. R. Importance of climate-driven forest–savanna biome shifts in anthropological and ecological research. Proc. Natl Acad. Sci. USA 111, E3831–E3832 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Wright, J. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15382 (2020).

  • 44.

    Bomfim, B. et al. Fire affects asymbiotic nitrogen fixation in Southern Amazon Forests. J. Geophys. Res. Biogeosci. 125, (2020).

  • 45.

    Rossetti, D. F., Bertani, T. C., Zani, H., Cremon, E. H. & Hayakawa, E. H. Late Quaternary sedimentary dynamics in Western Amazonia: Implications for the origin of open vegetation/forest contrasts. Geomorphology 177–178, 74–92 (2012).

    ADS  Article  Google Scholar 

  • 46.

    Hoffmann, W. A. et al. Ecological thresholds at the savanna-forest boundary: How plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett. 15, 759–768 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Roddaz, M. et al. Evidence for the control of the geochemistry of Amazonian floodplain sediments by stratification of suspended sediments in the Amazon. Chem. Geol. 387, 101–110 (2014).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Santos, R. V. et al. Source area and seasonal 87Sr/86Sr variations in rivers of the Amazon basin. Hydrol. Process. 29, 187–197 (2015).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Passos, M. S. et al. Pleistocene-Holocene sedimentary deposits of the Solimões-Amazonas fluvial system, Western Amazonia. J. South Am. Earth Sci. 98, 102455 (2020).

    Article  Google Scholar 

  • 50.

    Bayon, G. et al. Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim. Cosmochim. Acta 170, 17–38 (2015).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Quintana-Cobo, I. et al. Dynamics of floodplain lakes in the Upper Amazon Basin during the late Holocene. Comptes Rendus Geosci. 350, 55–64 (2018).

    ADS  Article  Google Scholar 

  • 52.

    Hayakawa, E. H., Rossetti, D. F., Hayakawa, E. H. & Rossetti, D. F. Late quaternary dynamics in the Madeira river basin, southern Amazonia (Brazil), as revealed by paleomorphological analysis. Acad. Bras. Cienc. 87, 29–49 (2015).

    Article  Google Scholar 

  • 53.

    Gonçalves, E. S., Soares, E. A. A., Tatumi, S. H., Yee, M. & Mittani, J. C. R. Pleistocene-Holocene sedimentation of Solimões-Amazon fluvial system between the tributaries Negro and Madeira, Central Amazon. Braz. J. Geol. 46, 167–180 (2016).

    Article  Google Scholar 

  • 54.

    Viers, J. et al. Seasonal and provenance controls on Nd–Sr isotopic compositions of Amazon rivers suspended sediments and implications for Nd and Sr fluxes exported to the Atlantic Ocean. Earth Planet. Sci. Lett. 274, 511–523 (2008).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Sant’Anna, L. G. et al. Age of depositional and weathering events in Central Amazonia. Quat. Sci. Rev. 170, 82–97 (2017).

    ADS  Article  Google Scholar 

  • 56.

    Guyot, J. L. et al. Clay mineral composition of river sediments in the Amazon Basin. CATENA 71, 340–356 (2007).

    Article  Google Scholar 

  • 57.

    Macedo, R. S. et al. Amazonian dark earths in the fertile floodplains of the Amazon River, Brazil: An example of non-intentional formation of anthropic soils in the Central Amazon region. Bol. do Mus. Para. Emilio Goeldi Cienc. Humanas 14, 207–227 (2019).

    Article  Google Scholar 

  • 58.

    Gross, D. R. Protein capture and cultural development in the Amazon basin. Am. Anthropol. 77, 526–549 (1975).

    Article  Google Scholar 

  • 59.

    Bomfim, B. et al. Litter and soil biogeochemical parameters as indicators of sustainable logging in Central Amazonia. Sci. Total Environ. 714, 136780 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Lehmann, J. et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249, 343–357 (2003).

    CAS  Article  Google Scholar 

  • 61.

    Gay‐des‐Combes, J. M. et al. Tropical soils degraded by slash‐and‐burn cultivation can be recultivated when amended with ashes and compost. Ecol. Evol. 7, 5378–5388 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Isendahl, C. & Smith, M. E. Sustainable agrarian urbanism: The low-density cities of the Mayas and Aztecs. Cities 31, 132–143 (2013).

    Article  Google Scholar 

  • 63.

    Clement, C. R. et al. The domestication of Amazonia before European conquest. Proc. R. Soc. B Biol. Sci. 282, 20150813 (2015).

    Article  Google Scholar 

  • 64.

    de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Mongeló, G. Early and Middle Holocene human occupations in Southwest Amazon. Bol. Mus. Para. Emílio Goeldi. Cienc. Hum. https://doi.org/10.1590/2178-2547-bgoeldi-2019-0079 (2020).

  • 66.

    Kistler, L. et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362, 1309–1313 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Denevan, W. M. A Bluff model of riverine settlement in prehistoric Amazonia. Ann. Assoc. Am. Geogr. 86, 654–681 (1996).

    Article  Google Scholar 

  • 68.

    Silva, L. C. R., Corrêa, R. S., Doane, T. A., Pereira, E. I. P. & Horwath, W. R. Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion. Ecol. Appl. 23, 1345–1356 (2000).

    Article  Google Scholar 

  • 69.

    Kurth, V. J., MacKenzie, M. D. & DeLuca, T. H. Estimating charcoal content in forest mineral soils. Geoderma 137, 135–139 (2006).

    ADS  CAS  Article  Google Scholar 

  • 70.

    Silva, L. C. R. et al. Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands. Ecol. Appl. 25, 1226–1234 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Hare, V. J., Loftus, E., Jeffrey, A. & Ramsey, C. B. Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives. Nat. Commun. 9, 252 (2018).

  • 72.

    Krull, E. S., Bestland, E. A. & Gates, W. P. Soil organic matter decomposition and turnover in a tropical Ultisol: evidence from δ13C, δ15N and geochemistry. Radiocarbon 44, 93–112 (2002).

  • 73.

    Gioia, S. M. C. L. & Pimentel, M. M. The Sm-Nd isotopic method in the Geochronology Laboratory of the University of Brasília. Acad. Bras. Cienc. 72, 218–245 (2000).

    Google Scholar 


  • Source: Ecology - nature.com

    Aerosols from pollution, desert storms, and forest fires may intensify thunderstorms

    Portable device can quickly detect plant stress