Weiskittel, A. R. et al. A call to improve methods for estimating tree biomass for regional and national assessments. J. For. 113, 414–424 (2015).
Huang, H., Liu, C., Wang, X., Zhou, X. & Gong, P. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sens. Environ. 221, 225–234 (2019).
Zianis, D. & Seura, S. Biomass and stem volume equations for tree species in Europe. Silva Fenn. Monogr. 4, 1–63 (2005).
Henry, M. et al. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn. 45, 477–569 (2011).
Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. Comprehensive Database of Diameter-Based Biomass Regressions for North American Tree Species (USDA Forest Service, 2003).
Yuen, J. Q., Fung, T. & Ziegler, A. D. Review of allometric equations for major land covers in SE Asia: uncertainty and implications for above- and below-ground carbon estimates. For. Ecol. Manag. 360, 323–340 (2016).
Liu, C. et al. Separating regressions for model fitting to reduce the uncertainty in forest volume–biomass relationship. Forests 10, 658 (2019).
Niklas, K. J. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytol. 171, 27–40 (2006).
Smith, J. E., Heath, L. S. & Jenkins, J. C. Forest Volume-to-Biomass Models and Estimates of Mass for Live and Standing Dead Trees of U.S. Forests (USDA Forest Service, 2003).
Jalkanen, A., Mäkipää, R., Ståhl, G., Lehtonen, A. & Petersson, H. Silviculture-driven vegetation change in a European temperate deciduous forest. Ann. For. Sci. 62, 313–323 (2005).
Guo, Z., Fang, J., Pan, Y. & Birdsey, R. Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. For. Ecol. Manag. 259, 1225–1231 (2010).
Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).
Ishihara, M. I. et al. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. Ecol. Appl. 25, 1433–1446 (2015).
Xiang, W. et al. General allometric equations and biomass allocation of Pinus massoniana trees on regional scale in southern China. Ecol. Res. 26, 697–711 (2011).
Parresol, B. R. Assessing tree and stand biomass: a review with examples and critical comparisons. For. Sci. 45, 573–593 (1999).
Wirth, C., Schumacher, J. & Schulze, E.-D. Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol. 24, 121–139 (2004).
Rutishauser, E. et al. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. For. Ecol. Manag. 307, 219–225 (2013).
Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).
Gonzalez-Benecke, C. A. et al. Local and general above-stump biomass functions for loblolly pine and slash pine trees. For. Ecol. Manag. 334, 254–276 (2014).
Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).
Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A. & Henry, M. Should tree biomass allometry be restricted to power models? For. Ecol. Manag. 353, 156–163 (2015).
Sheil, D. et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct. Ecol. 31, 568–581 (2017).
Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).
Schafer, J. L. & Mack, M. C. Growth, biomass, and allometry of resprouting shrubs after fire in scrubby flatwoods. Am. Midl. Nat. 172, 266–284 (2014).
Poorter, H. et al. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. 208, 736–749 (2015).
Smith, R. J. Rethinking allometry. J. Theor. Biol. 87, 97–111 (1980).
Dassot, M. et al. Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput. Electron. Agric. 89, 86–93 (2012).
Disney, M. I. et al. Weighing trees with lasers: advances, challenges and opportunities. Interface Focus 8, 201700484 (2018).
Sarrus, P. F. & Rameaux, J.-F. Application des sciences accessoires et principalement des mathématiques à la physiologie générale. Bull. Acad. R. Méd. 3, 1094–1100 (1838).
Huxley, J. S. & Teissier, G. Terminology of relative growth. Nature 137, 780–781 (1936).
Gayon, J. History of the concept of allometry. Am. Zool. 40, 748–758 (2000).
Rubner, M. Über den einfluss der körpergrösse auf stoff- und kraftwechsel. Z. Biol. 19, 536–562 (1883).
von Bertalanffy, L. General System Theory: Foundations, Development, Applications (George Braziller, 1973).
Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).
West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).
West, G. B., Brown, J. H. & Enquist, B. J. A general model for ontogenetic growth. Nature 413, 628–631 (2001).
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Bokma, F. Evidence against universal metabolic allometry. Funct. Ecol. 18, 184–187 (2004).
Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4-law” of metabolism. J. Theor. Biol. 209, 9–27 (2001).
Kozłowski, J. & Konarzewski, M. Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct. Ecol. 18, 283–289 (2004).
Henry, M. et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For. Ecol. Manag. 260, 1375–1388 (2010).
Satoo, T. Notes on Kittredge’s method of estimation of amount of leaves of forest stand. Jpn. J. For. 44, 267–272 (1962).
Ruark, G. A., Martin, G. L. & Bockheim, J. G. Comparison of constant and variable allometric ratios for estimating populus tremuloides biomass. For. Sci. 33, 294–300 (1987).
Mori, S. et al. Mixed-power scaling of whole-plant respiration from seedlings to giant trees. Proc. Natl Acad. Sci. USA 107, 1447–1451 (2010).
Tjørve, E. Shapes and functions of species-area curves (II): a review of new models and parameterizations. J. Biogeogr. 36, 1435–1445 (2009).
Luo, Y., Wang, X., Zhang, X. & Lu, F. Biomass and Its Allocation of Forest Ecosystems in China [in Chinese] (Chinese Forestry Publishing House, 2013).
Stovall, A. E. L., Shugart, H. H., Stovall, A. E. L. & Anderson-Teixeira, K. J. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. For. Ecol. Manag. 427, 217–229 (2018).
Packard, G. C. Is logarithmic transformation necessary in allometry? Biol. J. Linn. Soc. 109, 476–486 (2013).
Mascaro, J., Litton, C. M., Hughes, R. F., Uowolo, A. & Schnitzer, S. A. Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biol. J. Linn. Soc. 111, 230–233 (2014).
Sprugel, D. G. Correcting for bias in log-transformed allometric equations. Ecology 64, 209–210 (1983).
Peichl, M. & Arain, M. A. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 253, 68–80 (2007).
Wolf, A., Field, C. B. & Berry, J. A. Allometric growth and allocation in forests: a perspective from FLUXNET. Ecol. Appl. 21, 1546–1556 (2011).
Litton, C. M., Raich, J. W. & Ryan, M. G. Carbon allocation in forest ecosystems. Glob. Change Biol. 13, 2089–2109 (2007).
Vallet, P., Dhôte, J. F., Moguédec, G. L. E., Ravart, M. & Pignard, G. Development of total aboveground volume equations for seven important forest tree species in France. For. Ecol. Manag. 229, 98–110 (2006).
Cannell, M. G. R. World Forest Biomass and Primary Production Data (Academic Press, 1982).
Usoltsev, V. A. Forest Biomass and Primary Production Database for Eurasia (Ural State Forest Engineering Univ., 2013).
West, G. B. & Brown, J. H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005).
Reich, P. B. et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).
Li, H., Han, X. & Wu, J. Lack of evidence for 3/4 scaling of metabolism in terrestrial plants. J. Integr. Plant Biol. 47, 1173–1183 (2005).
Zhou, X. et al. Correcting the overestimate of forest biomass carbon on the national scale. Method Ecol. Evol. 7, 447–455 (2016).
Enquist, B. J., Brown, J. H. & West, G. B. Allometric scaling of plant energetics and population density. Nature 395, 163–165 (1998).
Source: Ecology - nature.com